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ABSTRACT
AOI segmentation is a prerequisite task in location-based services
such as food delivery. It aims to divide the urban geographical
space into several non-overlapping regions, also termed Areas of
Interest (AOIs). Previous efforts typically resort to optimization
methods to meet specific service-semantic goals (e.g., workload
equality). Though promising, optimization-based methods lack: i)
the ability to incorporate various spatial and temporal features, and
ii) the generalizability to accommodate different service-semantic
goals. Targeting the above limitation, we present the first attempt
to generalize Graph-based Deep Reinforcement Learning (GRL) for
AOI segmentation. Specifically, the entire urban space is modeled
as a graph, where each node represents one atom region and the
edge denotes spatial connectivity between atom regions. We begin
by highlighting that the AOI segmentation problem can be natu-
rally formulated as a sequential decision problem on the graph,
which adjusts one node (i.e., atom region) along AOI’s border at
each decision step. Based on the above understanding, we leverage
a Markov Decision Process (MDP) to model the sequential deci-
sion process, leading to a novel graph-based deep reinforcement
framework called GRL4AOI. It effectively ingests various region-
related features (such as region size, order number, trajectories)
with deep learning capabilities. Furthermore, it models various
service-semantic objectives in a flexible manner by treating them
as rewards to guide the learning process. Based on the framework,
we implement a model equipped with Double-DQN for AOI seg-
mentation in the logistics service, with two service-semantic goals:
i) trajectory modularity and ii) predictability. Extensive offline ex-
periments and the online deployment demonstrate the effectiveness
of the proposed framework.

1 INTRODUCTION
The rapid development of location-based services (LBS), such as
food delivery [29], logistics [23], ride-sharing [25], and spatial
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Table 1: Comparison between our model and related ones.

Method Geo-aware Service-aware Abundant feature Generalizability
Fixed-shape ✘ ✘ ✘ ✘

Road-network ✔ ✘ ✘ ✘

Optimization-based ✔ ✔ ✘ ✘

GRL4AOI (ours) ✔ ✔ ✔ ✔

crowdsourcing [27, 28], has significantly enhanced people’s daily
lives. In such LBS platforms, a crucial task is AOI segmentation,
which aims to partition the given urban geographical space intomul-
tiple non-overlapping regions, known as Areas of Interest (AOIs).
AOI segmentation serves as a foundation for the platform as numer-
ous subsequent tasks rely on the segmentation results as a necessary
input. To illustrate, leading ride-sharing companies such as DiDi
and Uber divide the city into multiple AOIs to efficiently allocate
available drivers to areas with high demand [8, 14]. Similarly, logis-
tics platforms like Cainiao and JD.COM adopt AOI segmentation to
assign orders to couriers [15, 20, 24] in the last-mile delivery. Given
these instances, there is a growing demand for effective methods
to generate a well-organized set of AOIs.

A direct way is to divide the given urban space into several
fixed-shape grids or hexagons [8, 11, 13, 26]. In contrast, road-
network methods [12, 19] utilize road networks as AOI boundaries,
which can naturally capture the geo-semantics (i.e., identifying
geographical entities such as communities and schools). Recently,
we have witnessed a bloom of optimization-based methods be-
ing proposed, aiming to achieve better AOI segmentation defined
by certain service-semantic goals, i.e., operational requirements
generated by downstream tasks in LBS platforms. As an example,
E-partition [10] focuses on achieving workload equity by segment-
ing AOIs, while RegionGen [3] aims to enhance demand prediction
accuracy through optimizing AOI segmentation. Though promising,
these optimization-based algorithms face the following two limita-
tions that restrict their performance in real-world applications (the
comparison of those methods and ours is shown in Table 1):

1) Lack of ability to effectively incorporate adequate spatial and
temporal features into the optimization process. Urban regions are
usually associated with various features, such as their size, type,
orders located in that region, and trajectories in the region. Tech-
nically speaking, a well comprehension of those information is
beneficial for a more optimized AOI segmentation. However, previ-
ous methods only take one or limited features into the optimiza-
tion process, lacking the investigation on modeling different types
of features. 2) Lack of generalizability to accommodate different
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(b) Optimization-based methods

(c) Service-aware Goals (d) Our GRL4AOI Framework
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Figure 1: Illustration of different frameworks. Compared
with previous works, we present the first attempt to leverage
the power of DRL for AOI segmentation.

service-semantic goals. The majority of optimization-based meth-
ods are designed to meet only one service goal, as it requires great
effort to construct the optimization problem and the constraints
with respect to the service goal. However, in reality, there can be
many different services (e.g., order dispatching, route prediction)
rely on the AOI results. Therefore, there is a high demand for an
AOI segmentation framework which could accommodate different
downstream tasks.

Targeting the above limitation, we generalize deep reinforcement
learning for AOI segmentation, leading to a novel framework called
GRL4AOI. Specifically, as shown in Figure 1, we first utilize road
segmentation methods [3] to extract geographically semantically
meaningful atomic regions. Based on this, a graph is constructed
to better represent the geographical space, where nodes are atomic
regions and edges represent spatial proximity between them. Then,
we show that the AOI segmentation problem can be naturally seen
as a sequential decision making problem on the graph, where each
decision step adjusts one node (i.e., atom-region) along AOI’s bor-
der. In this case, we are able to formulate the above process as a
Markov Decision Process (MDP) and bring in deep reinforcement
learning approaches to solve the problem. Doing so introduces the
following two metrics: i) the DRL model can take full advantage of
various region-related features (such as region size, order number,
workload) with deep learning capabilities (targeting limitation 1);
ii) Different service-semantic goals can be introduced as rewards
in a flexible manner (targeting limitation 2).

Furthermore, we implement a model (named GRL4AOI-L) based
on the framework to solve AOI segmentation for last-mile delivery
service in logistics. It introduces a Double Deep Q-learning Network
(DDQN) to gradually optimize the AOI generation with two service-
semantic goals: i) trajectory modularity, i.e., maximize tightness
of the trajectory connections within an AOI and the sparsity of
connections between AOIs; ii) predictability [3], i.e., maximize the
accuracy of demand prediction in generated AOIs. Overall, the
contribution of this work is summarized as follows:

• By formulating the AOI segmentation as a sequential decision
problem in the graph, we propose the first-ever graph-based
DRL framework GRL4AOI. It can achieve both geo-semantic

and service-semantic goals in a flexible way while taking full
advantage of various features.

• Based on the framework, we propose GRL4AOI-L for AOI seg-
mentation in logistics service. It adopts a value-based model
Double-DQN to improve the trajectory modularity and pre-
dictability for service in logistics.

• We conduct extensive offline experiments as well as the online de-
ployment, the results demonstrate the superiority of our method
over other solutions.

2 PRELIMINARIES
Without loss of generality, we provide a service-agnostic formula-
tion for service-aware AOI segmentation, since different services
can have various inputs and service-semantic goals.
Definition 1: Geographic Data G, contains graphical informa-
tion of the target urban space, e.g., the road network or satellite
images. Geographic data is the basic requirement for achieving
segmentation with geographic semantics.
Definition 2: Service DataS, defined as data generated during the
operation process, such as orders in online food delivery systems,
or courier trajectory data in logistics platforms.
Definition 3: Service-semantic Goals, which refers to operation
requirements/objectives generated in the service platform, such
as predictability and workload equity. We use O = {𝑜1, . . . , 𝑜𝑘 } to
denote the service-semantic goals, each 𝑜𝑖 is a predefined goal.
Definition 4: Service-aware AOI Segmentation. Given the ge-
ographic data G and service data S, service-aware AOI segmen-
tation learns a mapping function F that divides the target urban
space into several non-overlapping AOIs, which aims to achieve
the service-semantic goals O, formulated as:

FO (G,S) → A := {𝑎1, . . . , 𝑎𝑛}, (1)

where A is an segmentation result with 𝑛 AOIs, and 𝑎𝑖 means the
𝑖-th AOI. Each AOI is a region in the geographical space.

3 PROPOSED FRAMEWORK: GRL4AOI
As shown in Figure 2, GRL4AOI consists of two steps: Atom-Region
Graph (AR-Graph) construction based on geographical data and ser-
vice data; 2) RL-based AOI segmentation, which gradually adjusts
the node in the atom-region graph by the agent under the guidance
of the rewards designed by service-semantic goals. Specifically,

1) Atom-Region Graph Construction first utilizes the fine-grained
road network to divide the urban space into non-overlapping re-
gions, called atom-region. Then, a graph 𝐺 = (V, E,X, E) is con-
structed, with each node corresponding to an atom-region. E𝑡 =

{(𝑖, 𝑗) | 𝑣𝑖 , 𝑣 𝑗 ∈ V𝑡 } is the set of edges. X𝑡 ∈ R𝑛×𝑑𝑣 and E𝑡 ∈
R𝑛×𝑛×𝑑𝑒 are the node and edge features respectively, where 𝑑𝑣 and
𝑑𝑒 are the node feature dimension and edge feature dimension, re-
spectively. Various service data can be incorporated into the graph
as node/edge features. For example, using the number of orders
generated in the atom-region as the node feature.

2) RL-based AOI segmentation introduces a novel perspective
to show that AOI segmentation can be regarded as a sequential
decision-making problem. As illustrated in Figure 3, the core idea is
deciding which neighbor AOI it belongs to for a node (called node
merging decision or AOI selection) located at AOI’s border at each
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Figure 2: GRL4AOI Architecture, mainly includes two steps: 1) atom-region graph construction, based on geographical data and
service data. 2) RL-based AOI segmentation, which gradually adjusts the node’s AOI in the atom-region graph by the agent
under the guidance of the rewards designed by service-semantic goals.

decision step, via a trained AOI segmentation agent. After each
action is performed, the environment will provide reward feedback
that is aligned with service-semantic goals. Guided by the rewards,
the agent updates its parameters and gradually adjusts the node in
the AR-Graph to achieve better segmentation results.

Technically, the process of making sequential decisions can be
represented by a finite-horizon discountedMarkovDecision Process
(MDP) [21]. In this process, an AOI segmentation agent interacts
with the environment over 𝑇 discrete time steps by AOI selection.
Formally, a MDP can be formulated as 𝑀 = (S,A, P, R, 𝛾), where
S is the set of states, A is the set of actions, P : S × A × S →
R+ represents the transition probability, and R : S × A → R+
represents the reward function. The initial state distribution is 𝑠0 :
S → R+, and 𝛾 ∈ [0, 1] is a discount factor to control the trade-offs
between the importance of immediate and future rewards. When
providedwith a state 𝑠𝑡 at a given step 𝑡 , the AOI segmentation agent
utilizes the current policy 𝜋𝜃 (a deep neural network parameterized
by 𝜃 ) to generate an action, i.e., selecting a nearby AOI for the
node. The agent then receives a reward 𝑟𝑡 defined by the service-
semantic goals from the environment. During the training process,
the objective is learning the best parameter 𝜃∗ for the agent to
maximize the expected cumulative reward, formulated as:

𝜃∗ = argmax𝜃E𝜋𝜃

[
𝑇∑︁
𝑡=1

𝛾𝑡𝑟𝑡

]
, (2)

where𝑇 is the total time step related to the node number in the AR-
Graph. In the proposed framework, the agent, state, action, reward,
and state transition probability are defined as follows:
AOI Segmentation Agent: It is responsible for learning the target
function FO . It selects an AOI for each node with the learned policy
(shown in Figure 3). The agent follows an encoder-decoder archi-
tecture, where the encoder embeds features from the current state
𝑠 into hidden representations. The decoder produces an action 𝑎 at
each time step, based on embeddings from the encoder. Abstractly,

𝑎𝑡 = Decoder(Encoder(𝑠𝑡 )), (3)

State: A state 𝑠𝑡 is composed of the information of current AOI seg-
mentation, the whole AR-Graph, and the target node. All possible
segmentations make up the entire state space.

Action: As shown in Figure 3, an action𝑎𝑡 indicates which neighbor
node should be merged to for target AOI. We also add an action
named “stay”, which means that there is no suitable neighbor to
merge, the target node remains its original AOI. Therefore, the
action space at each step is made up of all neighbors of the target
node and the target node itself. Moreover, it is worth mentioning
that by setting the action as adjusting the node’s neighborhoods,
the spatial continuity constraint that each AOI should have inter-
connected nodes can be naturally satisfied. Moreover, the maximum
area constraint is set to avoid oversized regions, which means if a
region exceeds the area constraint after a merge action, then this
action will be changed to “stay”.

Target Node

a1

a1
a2

a2

st st+1 st+1

a3

Action

State

stay

Figure 3: Illustration of Actions.

State Transition Probability: 𝑃 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ) represents the tran-
sition probability from state 𝑠𝑡 to 𝑠𝑡+1 if action 𝑎𝑡 is taken at 𝑠𝑡 ,
which means that the state transfer from one segmentation from
another one. In the AOI segmentation problem, the environment is
deterministic with no uncertainty, i.e., the state 𝑠𝑡+1 transited from
state 𝑠𝑡 after taking action 𝑎𝑡 is deterministic.
Service-semantic Reward: 𝑟𝑡 ∈ R: A well-designed reward can
have a significant impact on the learning performance of the agent
and ultimately determine the quality of the model. In AOI segmen-
tation, certain service-specific semantic goals need to be achieved
after the segmentation. Those goals can be easily converted into
rewards in the RL framework, which improves the model’s flexibil-
ity to accommodate various goals in different services. In Section 4,
we will introduce how to design the rewards by taking logistics
service as an example.
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4 PROPOSED MODEL FOR LOGISTICS
SERVICE: GRL4AOI-L

Based on the above framework, we further propose amodel GRL4AOI-
L for AOI segmentation in logistic platforms (e.g., Cainiao Net-
work1), where the order dispatching and logistics management
heavily rely on AOIs in its last-mile package pick-up/delivery ser-
vice. Meanwhile, massive service data has been collected during
the operation process, including package information and courier’s
trajectories. Given the logistic-related service data and geographic
data, the task of AOI segmentation in logistics is generating a set
of AOIs that can meet the two service-semantic goals: i) trajectory
modularity and ii) predictability (detailed in Section 4.2).

4.1 Atom-Region Graph Construction
Figure 4 shows the process of AR-Graph construction by leveraging
the road network, trajectory, and parcel data. We first utilize the
image-based segmentation method [3] to identify atom-regions
by considering fine-grained road networks as region boundaries,
with two operations: connected component labeling (CCL), and
thinning. CCL finds the connected component separated by roads,
and thinning eliminates roads between regions. Each atom-region
is a node in the graph. In the adjacency matrix A (equivalent to
the edge set), A𝑖, 𝑗 = 1 if region 𝑖 and region 𝑗 are neighbors in
geographical space. A detailed process is given in Appendix A.1.

Node & Edge Features: The AR-Graph is associated with abun-
dant spatial-temporal features, where each node (i.e., atom-region)
feature 𝒙𝑖 includes: i) number of parcels in the atom-region; ii)
Initial AOI assignment by coarse-grained roads-network segmen-
tation; iii) the size of the atom-region. For the edge feature 𝒆𝑖 , we
calculate the number of trajectory transitions between two adjacent
atom-regions, allowing the model better to capture the trajectory
transfer patterns between different regions.

Figure 4: Atom-region Graph Construction.

4.2 Double-DQN for AR-Graph Segmentation
Following the proposed framework, we further implement a rein-
forcement learning model with Double-DQN to solve the problem.
State. The state records the target node and its neighbors, the
current AOI segmentation, and the AR-Graph. Specifically,
• The target node 𝑣𝑖𝑡 is the node 𝑖 to be modified at decision step 𝑡 ,

which is represented by its features 𝒙𝑖 ∈ R𝑑𝑣 .
1https://www.cainiao.com/

• Neighbors of the target nodeN𝑖
𝑡 = {𝒙 𝑗 |A𝑖, 𝑗 = 1}. Understanding

the neighbors of a node is crucial for its decision on AOI selection.
• Current AOI segmentation A𝑡 = {𝑎1, . . . , 𝑎𝑛𝑡 }, where 𝑎𝑖 means

the 𝑖-th AOI, and 𝑛𝑡 is the number of AOI at current step. A𝑡 is
basic information for the agent to understand the whole distri-
bution of current AOI segmentation.

• AR-Graph𝐺 = (V, E,X, E) as introduced above, which contains
abundant features for describing each node and the correlation
between nodes.

Service-aware Reward.Our framework can handle different objec-
tive functions and optimize the segmentation by converting them
as rewards. For logistics services, we set two goals in the reward
function, trajectory modularity 𝑜1 and predictability 𝑜2:

Trajectory modularity. In logistics service, couriers usually finish
all tasks in one AOI and then head to another one. To this end, we
hope that within each AOI, there are dense trajectory connections;
while between different regions, trajectory transitions are as weak
as possible. Inspired by the concept of modularity in community
detection [4], we utilize “trajectory modularity” to name this service
goal. It is calculated by the proportion of trajectories within the
same AOI in total trajectories:

𝑜1 =

∑
𝜏

∑
𝑎 𝑁𝑎,𝜏∑
𝜏 𝑁𝜏

, (4)

where 𝑁𝑎,𝜏 is the number of the trajectory 𝜏 in AOI 𝑎 and 𝑁𝜏 is the
total number of the trajectories.

Predictability. Predictability refers to whether future events of in-
terest (i.e., the package delivery demand in this paper) can be easily
predicted. One important service-semantic goal is to achieve better
predictability of the demand time series by appropriate AOI seg-
mentation. Intuitively, predictability should be tested by evaluating
a given prediction model (usually deep models) using metrics such
as MSE and RMSE. However, this model-dependent way requires
retraining the prediction model each time the AOI segmentation
changes, which is notoriously time-consuming and practically in-
tractable. To tackle the challenge, we utilize the Auto-Correlation
Function (ACF) to represent the predictability of an AOI’s time
series following RegionGen [3], which shows that a better ACF
is usually associated with better predictability. Formally, let the
time series of the 𝑖-th AOI be 𝑠𝑖,1, 𝑠𝑖,2, . . . , 𝑠𝑖,𝑀 , where 𝑠𝑖,𝑚 means
the number of packages generated at the 𝑖-th region in𝑚-th hour.
The ACF of region 𝑖 after 𝑘 slots delay is formulated as:

𝜌𝑘𝑖 =
𝑀 ·∑𝑀

𝑚=𝑘+1 (𝑠𝑖,𝑚 − 𝑠𝑖 ) (𝑠𝑖,𝑚−𝑘 − 𝑠𝑖 )
(𝑀 − 𝑘) ·∑𝑀

𝑚=1 (𝑠𝑖,𝑚 − 𝑠𝑖 )2
, (5)

where 𝑠𝑖 is the mean value of the series in AOI 𝑖 , and 𝑘 is the delay
of the series. Here we evaluate the predictability by setting 𝑘 to 24
to calculate the auto-correlation of 24 hours (i.e., one day) delay:

𝑜2 =
∑︁
𝑖∈𝐴

𝜌24𝑖 /|𝐴|. (6)

ACF is utilized as a fast proxymeasurement for predictability, which
does not require re-train themodel after the change of segmentation
results. In summary, the overall objective function is:

𝑅𝑡 = 𝑘1𝑜1 + 𝑘2𝑜2, (7)
4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Applied Data Science Track Paper Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

where 𝑘1 and 𝑘2 are coefficients to balance the scale of the two
objectives. And we use the difference between the objective value
of two states as the reward for each step, it can be formulated as:

𝑟𝑡 = 𝑅𝑡+1 − 𝑅𝑡 . (8)

GNN-based Agent. To fully model the spatial correlation between
different atom-regions, we employ a Graph Neural Network (i.e.,
GCN) to encode the AR-Graph, then utilize the attentionmechanism
to conduct AOI selection for the target node.

GCN for Capturing the Spatial Correlation. Given the node and
edge features, we first project them into a hidden representation by
a linear projection, resulting in the node embedding 𝒉𝑖 ∈ R𝑑ℎ , and
the edge embedding 𝒛𝑖 ∈ R𝑑𝑧 , respectively. Then, we perform graph
convolution for 𝐿 times, updating the node and edge embeddings by
leveraging their interactions. We use one-hop neighbor messages
in the information updating process, which can be formulated as:

𝒉𝑙+1𝑖 = 𝑓 (𝒉𝑙𝑖 ,Agg{𝒉
𝑙
𝑗 , 𝒛

𝑙
𝑖 𝑗 : 𝑗 ∈ 𝑵𝑖 })

𝒛𝑙+1𝑖 𝑗 = 𝑔(𝒛𝑙𝑖 𝑗 ,Agg{𝒉
𝑙
𝑖 ,𝒉

𝑙
𝑗 }),

(9)

where Agg(·) is the aggregation function, and the updating function
𝑓 , 𝑔 is composed by a non-linear transformation, defined as follows:

𝒉𝑙+1𝑖 = 𝒉𝑙𝑖 + 𝜎 ((W𝑙
1𝒉

𝑙
𝑖 +

∑︁
𝑗∈N𝑖

𝜂𝑙𝑖 𝑗 ⊙ W𝑙
2𝒉

𝑙
𝑗 )) (10)

𝒛𝑙+1𝑖 𝑗 = 𝒛𝑙𝑖 𝑗 + 𝜎 (W𝑙
3𝒛

𝑙
𝑖 𝑗 +W𝑙

4𝒉
𝑙
𝑖 +W𝑙

5𝒉
𝑙
𝑗 ), (11)

where W𝑙
𝑖
∈ R𝑑ℎ×𝑑ℎ (𝑖 = 1, . . . , 5) are trainable parameters, 𝜎 is

ReLU activation function. And 𝜂𝑙
𝑖 𝑗

= 𝜎 (W𝑙
6z

𝑙
𝑖 𝑗
)/∑𝑗 ′∈N𝑖

𝜎 (W𝑙
6z

𝑙
𝑖 𝑗 ′ ),

where W𝑙
6 ∈ R𝑑ℎ×1 is a trainable parameter. After 𝐿 layer of graph

convolution, we could get the node and edge representation H ∈
R𝑛×𝑑ℎ , Z ∈ R𝑛×𝑛×𝑑𝑧 .

Attention mechanism for neighbor selection. Based on the node
and edge embeddings, the attention mechanism is utilized to select
one node from the target’s neighbors, formulated as:

Hatt = softmax(QK
𝑇√︁

𝑑ℎ

)V (12)

where Q is the query from the embedding of target node 𝒉𝑖 , K, V
is the node embeddings H. Then, a feedforward layer is added to
project Hatt into output scores, and we mask non-neighbor nodes
by setting their scores to −𝑖𝑛𝑓 . At last, we apply softmax to the
score, which serves as the 𝑄 value in the RL framework:

Q = softmax(mask(W7Hatt)), (13)

whereW7 ∈ R𝑑ℎ×𝑑ℎ is a trainable parameter.
Overall, at each step, the agent encodes the state with a graph

convolutional network. Via convolutional operations, the GCN state
encoder extracts an effective representation of the target node’s
neighborhood information. Then the attention mechanism com-
putes the influence scores for the target node, which indicates the
performance score of the action in the learned policy. At last, the
AOI-selection policy network selects one of its neighbors based on
the attention score.
DDQN-based RL Training. To learn the agent’s policy network,
we adopt Double Deep Q-Networks (DDQNs) [22] for the rein-
forcement training procedure because of its strong performance as
proved in different environments such as games [9, 16, 18].

Specifically, DDQN is an improvement of DQN [16, 17], whose
primary idea is utilizing a neural network to approximate the Q-
value function, which reflects how good it is for an AOI selection
action at a certain state. The network takes a state 𝑠𝑡 as input and
produces Q-values for all possible actions. The Q-value is learned
iteratively through the Bellman equation:

𝑄 (𝑠𝑡 , 𝑎𝑡 ) = 𝑟𝑡 + 𝛾 max
𝑎𝑡+1

𝑄 (𝑠𝑡+1, 𝑎𝑡+1) . (14)

The optimal Q-value of an action is the sum of the current reward
and the maximum Q-values of all actions in the next state. However,
DQNs tend to overestimate Q-values because they use the same
network to select the best action and evaluate it. This can lead to
suboptimal policies and reduced stability in training.

Double DQNs aim to address this overestimation bias. Instead
of using a single network for both action selection and evaluation,
Double DQNs use two networks: i) An online network to select
the best action; ii) A target network to evaluate the Q-value of the
selected action. Thus, the updated Q-value in DDQNs is:

𝑄 (𝑠𝑡 , 𝑎𝑡 ) = 𝑟𝑡 +𝛾𝑄target (𝑠𝑡+1, argmax𝑎𝑡+1𝑄online (𝑠𝑡+1, 𝑎𝑡+1)) . (15)

Here 𝑄online is the Q-value estimated by the online network, and
𝑄target is the Q-value estimated by the target network. Compared
with DQN, the optimal action value Q is determined by the imme-
diate reward, and the maximum Q-value from the target network
in the next state. By decoupling the action selection from its eval-
uation, DDQNs reduce the overestimation bias, resulting in more
stable and efficient learning.

At last, since over-small atom-regions are meaningless in logis-
tics management, we add the minimal area constraints to generate
more practical AOIs. Specifically, we merge the AOI (which area is
smaller than the minimal area) to its neighbor who can bring the
best gain in total reward.

5 EXPERIMENTS
5.1 Experiment settings.
5.1.1 Dateset. The experiments are conducted based on the deliv-
ery data provided by one of China’s largest logistics companies,
which includes the delivery data from Shanghai, China. The dataset
comprises both order information and trajectory data. We collected
data from Jun. 2019 to Aug. 2019, resulting in nearly 260k orders
and 57.04 million trajectory points. The trajectory is sampled at
intervals of 2-4 seconds, with each point represented by its latitude,
longitude and timestep.

5.1.2 Baselines. We choose several classic algorithms as well as
state-of-the-art models as baselines.
• Grid, which segments the target urban space by fixed-shape grids.

The area of each grid is 1𝑘𝑚2.
• RoadNetwork [12], which is a common practice for AOI segmen-

tation that inferences AOIs by road networks.
• DBSCAN [6]. A classical method that makes the AOI segmenta-

tion by clustering all packages, with each cluster transformed
into an AOI.

• Louvain [2], which converts the AOI segmentation into the com-
munity detection problem [2, 7] on the graph, and applies the
Louvain to segment AOI.
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Table 2: Experiment Results.

Method Region A Region B Region C
𝑜total Traj-Modularity Predictablity 𝑜total Traj-Modularity Predictablity 𝑜total Traj-Modularity Predictablity

RoadNetwork 0.29 0.35 0.19 0.30 0.39 0.17 0.25 0.34 0.11
DBSCAN 0.31 0.18 0.50 0.26 0.18 0.38 0.23 0.16 0.34
Louvain 0.46 0.56 0.32 0.48 0.66 0.21 0.48 0.71 0.14
GCLP 0.49 0.51 0.46 0.40 0.42 0.36 0.42 0.51 0.28

RegionGen 0.64 0.57 0.73 0.32 0.22 0.47 0.29 0.37 0.18
GRL4AOI-L (ours) 0.68 0.57 0.84 0.70 0.70 0.68 0.52 0.66 0.32

• GCLP [4], which also formulates the problem as a community
detection problem and employs the label propagation method
for clustering.

• RegionGen [3] models the AOI segmentation as a multi-objective
optimization problem, by setting predictability and service speci-
ficity as goals.

5.1.3 Metrics. We use the ACF for predictability, trajectory modu-
larity (short as Traj-modularity), and their combined value 𝑜total to
evaluate the performance of different models.

5.1.4 Implementation. The offline experiments are conducted on
a machine with a Hygon C86 7151 CPU and NVIDIA RTX A4000
GPUs. We use the RMSprop optimizer for the parameter update.
The initial learning rate is set to 10−4 and decays in each episode.
The training episode is set to 1000. The random seed is set to 1. The
number of the GCN layer is set to 2, and its output dim is 16. The
max area constraint is set to 2𝑘𝑚𝑚2. The hyper-parameters 𝑘1, 𝑘2
in the total reward function are set to 0.6, 0.4, respectively.

5.2 Results.
To make a comprehensive comparison under different environ-
ments, we choose different regions in Shanghai. Table 2 presents the
comparison of our model with different baselines, which shows that
GRL4AOI-L significantly outperforms other methods. GRL4AOI-L
outperforms the most competitive baseline by 6.25% − 44.52% in
terms of total reward.

RoadNetwork only considers coarse-grained road networks for
AOI segmentation, without taking service semantics into account.
To this end, RoadNetwork achieves a bad performance in terms of
the service-semantic goals, especially only achieving 0.19 in ACF for
predictability. DBSCAN makes the AOI segmentation by clustering
the packages, the resulting AOI can well perceive the package den-
sity, thus achieving a promising performance in ACF score (since a
large number of packages usually means better predictability). How-
ever, AOI with high package density does not necessarily indicate
fewer trajectory transitions between different AOIs. For example,
there may be obstacles like rivers that separate those parcels. This
leads to its interior performance in Traj-modularity compared with
RoadNetwork.

Louvain transforms the AOI segmentation into a graph clus-
ter problem, aiming to group tightly connected nodes (defined by
trajectory transitions) together. As a result, it gets a competitive per-
formance of 0.56 in trajectory modularity. In contrast, GCLP divides
regions with distance restrictions which can reduce the trajectory
modularity and avoid generating over-large regions. Both methods
cannot take other service-semantic goals into account, resulting

in suboptimal performance in ACF. Especially for Louvain, it only
gets 0.32 in ACF.

RegionGen utilizes the optimization method that combines value
functions to maintain a Pareto-optimal [5] solution set. It achieves
the most competitive results compared to our proposed method, es-
pecially achieving 0.73 inACF at RegionA. In comparison, GRL4AOI-
L improves the trajectory modularity and data predictability by cast-
ing them into the reinforcement learning framework, which serves
as the reward to guide the model training. In this way, GRL4AOI-L
provides a more effective and flexible way to model abundant re-
gion features and service-semantic goals compared to RegionGen,
thus achieving optimal results considering the trajectory rewards
and predictability rewards.

5.3 Component Analysis.
We conduct the ablation study to investigate the impact of different
components of GRL4AOI-L. Figure 5 illustrates the results.

Firstly, we remove the GCN encoder. Without GCN (w/o GCN),
the total reward decreased by 3.66%. This indicates that the GCN
effectively integrates information from AR-Graph and plays a role
in the model’s decision-making process. Secondly, we remove the
Attention (w/o Attention) module. As a result, the reward decreases
by 2.09%. The Attention module helps select important nodes for
the current AOI selection more effectively, thereby enhancing the
model’s performance. When both GCN and attention are removed,
leaving only MLP (w/o GCN & Attention), the model’s performance
is the poorest.

Figure 5: Component Analysis.

5.4 Parameter Effectiveness.
Minimal Area. We investigate the impact of the minimum area
constraint in Region A. Figure 6 illustrates the rewards of different

6



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Applied Data Science Track Paper Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

area districts. As theminimum area constraint increases, we observe
an increase in trajectory modularity, predictability, and total reward.
This can be attributed to the fact that smaller areas typically contain
less data, and merging them with larger neighboring regions often
results in improved rewards.

Figure 6: Influence of minimal area constraints.

AR-Graph Granularity. We also investigate the impact of dif-
ferent granularities in atom-region graph construction. Specifi-
cally, we obtain 3 graphs (fine-grained & medium-grained & coarse-
grained) with different granularity by selecting different levels of
the road network(e.g. primary and secondary routes). Table 3 dis-
plays the model’s performance in different granularity. The coarse-
grained model performs worst in all metrics, because the solution
space is significantly reduced in the coarse-grained AR-Graph, thus
cannot achieve the optimal solution. In contrast, fine-grained data
leads to overall small atom-regions which do not have abundant
data, thus resulting in poor performance in predictability.

Table 3: Influence of Different AR-Graph Granularities.

Granularity 𝑜𝑡𝑜𝑡𝑎𝑙 Traj-Modularity Predictability
Fine (107 nodes) 0.67 0.63 0.75

Medium (79 nodes) 0.68 0.57 0.84
Coarse (53 nodes) 0.50 0.34 0.75

5.5 Case Study
We visualize the AOI segmentation results in one region of Shang-
hai to give an intuitive comparison between different methods.
Figure 8 shows the results with each color representing a different
AOI. Figure 8(a) shows the geographical information of the target
region. Figure 8(b) and (c) show the distribution of trajectories and
packages respectively, where the red color indicates high density.
In Figure 8(d), Grid generates AOI with the fixed shape, resulting
in a poor performance in geographical semantics. In Figure 8(e),
Road-Network produces AOI segmentation results with good spa-
tial semantic meaning. However, the fine-grained road network will
generate overall small regions that are unnecessary for logistics
management and lack service semantic meaning. In Figure 8(f),
DBSCAN makes AOI segmentation by clustering packages, where
atom-regions with high package density are aggregated into one
AOI. However, DBSCAN cannot introduce the area size constraints,

thus can easily result in oversized AOI. GCLP and Louvaion are
illustrated in Figture 8(g) and Figture 8(h), respectively. They both
tend to aggregate atom-regions with high trajectory density into
one AOI, and thus can perform well in the metrics of trajectory
modularity. In Figure 8(i), RegionGen is designed to improve the
predictability of AOIs, therefore, a large portion of its generated
AOI has a high ACF. However, regions with dense trajectory transi-
tions are separated since it cannot take the trajectory distribution
into account. In Figure 8(j), the proposed GRL4AOI-L generates
AOI segmentation results considering both package distribution
and trajectory distribution, leading to a promising performance in
trajectory modularity and predictability.

5.6 System Design
Our GRL4AOI framework operates in the offline mode primarily
for the task of AOI segmentation, leveraging the comprehensive
road network, realistic historical courier trajectories, as well as
dispatched orders. It updates AOIs in T+1 mode, which means that
the updates occur on the subsequent day to the current one (T) when
the courier data is collected. This systematic update ensures that
the AOIs remain relevant and are a true reflection of the evolving
logistics landscape.

Upon updating, the AOIs crafted by the offline phase of our
GRL4AOI framework are then synchronized with PolarDB, a real-
time online database. This integration facilitates the seamless utiliza-
tion of AOIs in real-time logistic services. In the online environment,
various applications harness these AOIs for critical operational
tasks such as order dispatch, which involves dynamically assign-
ing orders to couriers; route prediction, which forecasts the most
efficient paths; and arrival time estimation, ensuring customers
receive accurate predictions of delivery times. As couriers go about
their deliveries, their activities are captured, which are fed back
into our system. These real-time data points are stored in a MySQL
database, providing a wealth of information that continually refines
and enhances the AOI segmentation process. The bidirectional flow
of information between the offline AOI generation and the online

Offline deployment

Online deployment

Road 
Network

Historical 
Trajectories

Task 1. Order dispatch

Task 2. Route Prediction

Task 3. Time Estimation

Orders

GRL4AOI

AR-Graph 
construction

RL-based AOI 
Segmentation

{𝐴𝑂𝐼! , 𝐴𝑂𝐼" ,… ,𝐴𝑂𝐼#}

PolarDB

MySQL

Service 
Sem

antic D
ata

Figure 7: System deployment for GRL4AOI system
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Figure 8: Case Study, which shows the AOI segmentation results of different methods.

application of these AOIs creates a dynamic, self-improving system.
Figure 7 illustrates the system design.

6 RELATEDWORK
Current AOI segmentation methods can be broadly classified into
three classes: 1) fixed-shape, 2) road-network based and 3) optimization-
based methods.

Fixed-shape&Road-networkmethods. Fixed-shapemethods
divide the urban space into several fixed-shape regions, such as
grids or hexagons [8, 11, 13, 26]. Those methods cannot capture
the geographic semantic meaning, which may significantly trim
down the performance of other AOI-based tasks in the platform.
Road-network based methods [12, 19], which utilize road-networks
as boundary for AOIs, can well capture the geographic semantics
of the urban space. Though effective, a fundamental limitation is
the lack of service semantic information [3, 10], which is usually a
bottleneck that restricts the overall service performance.

Optimization-basedmethods. To address the above limitation,
optimization-based methods introduce service-specific goals or con-
straints (i.e., service semantics) to guide the AOI generation based
on optimization-based methods by leveraging various kinds of data
generated in the service. RegionGen [3] approaches the problem
as a multi-objective optimization task. The city is initially divided
into smaller spatial units using road networks. These units are then
grouped together into distinct AOIs by maximizing different objec-
tives, including the average predictability and service specificity of
the clusters. [1] introduces POI data and Web data, then utilizes an
alpha-shape partitioning method to infer the boundaries of impre-
cise AOIs. E-partition [10] cluster AOIs with the goal of equitable
workload assignment. It first predicts the service time of a worker
given a specific AOI, which is fed into the optimization algorithm
by setting the workload balance as the optimization goal. C-AOI
[30] introduces the order location, satellite image data and utilizes

an image-based model that converts the problem to an instance
segmentation task in the image field.

Overall, fixed-grid and road-networks solely rely on the fixed
grid or road networks as the AOI boundary, which can perceive
the geographical meaning of the AOIs, but cannot meet the service-
related goal. Optimization-basedmethods utilize optimizationmethod
for improving the service-semantic goals. They typically require
much effort to construct a specific optimization model for one or
two service goals. However, they lack the ability to effectively incor-
porate adequate spatial-temporal features, and the generalizability
to accommodate different service-semantic goals.

7 CONCLUSION
In this paper, we introduce a novel approach to generalize Graph-
based Deep Reinforcement Learning (GRL) for AOI segmentation.
In this approach, we conceptualize the entire urban space as a graph,
where each node represents an atom-region and the edges represent
spatial connectivity between atom regions. We address the AOI
segmentation problem by formulating it as a sequential decision
problem on the graph, which adjusts one node (i.e., atom region)
along AOI’s border at each decision step. To model this sequential
decision process, we employ a Markov Decision Process (MDP),
resulting in a new framework called GRL4AOI. This framework
effectively incorporates various region-related features, such as
region size, order number, and trajectories, using deep learning
capabilities. Additionally, it allows for the flexible integration of
service-semantic objectives by treating them as rewards to guide
the learning process. To validate the framework, we implement a
model equipped with Double-DQN for AOI segmentation in the lo-
gistics service domain. The model focuses on two service-semantic
goals: trajectory modularity and predictability. Through extensive
offline experiments and online deployment, we demonstrate the
effectiveness of our proposed framework.
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A IMPLEMENTATION DETAILS
A.1 Atom-Region Graph Construction
It is based on road networks in two steps. The first step filters
data and exports the image. The second step executes the image
partitioning algorithm.

Step 1: Filter the road network data and export it as an image. We
obtain road network data from OpenStreetMap2 and filter it based
on a specified area. Then we exclude certain roads that are unlikely
to be useful, such as those with tags like ’building’ or ’subway’. We
select a fine-grained road network (e.g., highways and rivers) to
partition the atomic regions, and a coarse-grained road network
(e.g. only some kinds of highway like ’highway: primary’) as the
basis for the initial road network partitioning. Because identifying
atomic regions requires a higher level of granularity.We then export
the road network as a binary image.

Step 2: Execute the road network image partitioning and recogni-
tion algorithm [3] to obtain the partitions. We first dilate the image
to eliminate closely parallel roads. Then find the connected compo-
nents and expand them to remove roads, so that we could obtain a
label matrix (called AOI label map) containing only AOIs. Each AOI
corresponds to an atom region in the image. Based on the AOI label
map, we can easily determine the adjacency relationships between
each AOI and construct the edges of the atom-region graph.

2https://www.openstreetmap.org/about
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