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ABSTRACT
The rapid evolution of large language models (LLMs) holds promise
for reforming the methodology of spatio-temporal data mining.
However, current works for evaluating the spatio-temporal under-
standing capability of LLMs are somewhat limited and biased. These
works either fail to incorporate the latest language models or only
focus on assessing a specific dimension of spatio-temporal capa-
bilities, making the evaluation not comprehensive. To address this
gap, this paper dissects LLMs’ capability of spatio-temporal data
into four distinct dimensions: knowledge comprehension, spatio-
temporal reasoning, accurate computation, and downstream ap-
plications. We curate several natural language question-answer
tasks for each category and build the benchmark dataset, namely
STBench, containing 15 distinct tasks and over 70, 000 QA pairs.
Moreover, we have assessed the capabilities of 13 LLMs and ex-
perimental results reveal that existing LLMs show remarkable
performance on knowledge comprehension and spatio-temporal
reasoning tasks, with potential for further enhancement on other
tasks through in-context learning, chain-of-thought prompting,
and fine-tuning. The code and datasets of STBench are released on
https://github.com/LwbXc/STBench.

1 INTRODUCTION
Large language models (LLMs) have shown potential in various
domains [11, 24, 26, 31] and one promising direction is enhancing
spatio-temporal data analysis with the ability of LLMs [4, 6, 14,
15, 17, 30]. While spatio-temporal data encompasses a variety of
datasets crucial for many fields such as geography, meteorology,
transportation, and epidemiology, the applicability and effective-
ness of LLMs in handling spatio-temporal data remain relatively
unexplored.
Related Works. Most existing evaluations of spatio-temporal abil-
ities only focus on a specific dimension. For instance, a series of
work [12, 16, 19, 23] focus on evaluating the spatial reasoning ca-
pability of LLMs by constructing QA pairs in toy environments
without temporal information, and some benchmarks mainly assess
the memory ability of spatio-temporal knowledge [9, 20].

In this paper, we propose a framework, namely STBench, to
comprehensively evaluate the spatio-temporal capabilities of LLMs.
STBench dissects the LLMs’ capacity into four distinct dimensions:
knowledge comprehension, spatio-temporal reasoning, accurate
computation, and downstream applications. Knowledge Compre-
hension (KC) examines the model’s capacity to understand and

∗ Corresponding authors.

Table 1: Comparing benchmarks for LLMs’ ability in spatio-
temporal analysis.

Format Temporal KC STR AC DA
[23] QA % % ! % %

[19] QA % % ! % %

[12] QA % % ! % %

[5] QA % ! % % %

[16] QA ! ! % % !

[20] QA ! ! ! ! %

[9] Probing ! ! % % %

[8] QA ! ! ! % !

Ours QA ! ! ! ! !

interpret the underlyingmeaning and context of spatio-temporal en-
tities and concepts. Spatio-Temporal Reasoning (STR) evaluates
the ability to understand and reason about the spatial and temporal
relationships between entities and events. Accurate Computa-
tion (AC) handles the precise and complex calculations of spatio-
temporal data. Moreover, we also employ some Downstream Ap-
plications (DA) such as trajectory anomaly detection and trajec-
tory prediction to assess the ability of LLMs on practical tasks. We
summarize and compare STBench with existing works in Table1.

For each dimension, we design several tasks and construct QA
pairs to qualitatively assess the ability of LLMs. We have curated a
benchmark dataset, STBench, which contains over 70, 000 QA pairs
and 15 distinct tasks covering the four dimensions. Furthermore,
we evaluated the latest 13 LLMs, including GPT-4o1, Gemma [18],
Llama2 [25], and provide a detailed evaluation report2. The re-
sults show that existing LLMs show remarkable performance on
knowledge comprehension and spatio-temporal reasoning tasks,
with potential for further enhancement on other tasks through
in-context learning, chain-of-thought prompting, and fine-tuning.

The contributions of this paper are summarized as following:
• This paper presents STBench, a comprehensive benchmark-

ing framework designed to evaluate the spatio-temporal
analysis capabilities. For a comprehensive evaluation, STBench
categorizes spatio-temporal abilities into four dimensions,
each with multiple tasks tailored to various data types, in-
cluding POI, trajectory, region and traffic flow.

1https://platform.openai.com/docs/models/gpt-4o
2https://arxiv.org/abs/2406.19065
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• We assessed 13 LLMs and conducted a detailed analysis
of their performance. The results highlight the remark-
able performance of LLMs in knowledge comprehension
and spatio-temporal reasoning tasks, while also identify-
ing areas for improvement in accurate computation and
downstream applications.

• Multiple enhancement methods, including in-context learn-
ing, chain-of-thought and supervised fine-tuning, are incor-
porated to enhance LLMs’ ability. The results reveal LLMs’
great potential in spatio-temporal analysis.

2 BENCHMARK CONSTRUCTION
Data Format. Tomake the output of LLMs controllable and tomake
it easier to identify the final answer, all data samples in STBench are
in the form of text completion rather than chatting. We provide the
question and several options to the model, and expect it to generate
an option number by completing the text "The answer is <Option>".

Knowledge Comprehension. We design four tasks for this
aspect: (1) POI Category Recognition (PCR) evaluates LLMs’ un-
derstanding of POI semantics by asking them to predict the POI
category according to the coordinates and related comments. (2)
POI Identification (PI) provides coordinates and comments of two
POIs and asks LLMs to determine if they are the same POI. (3) Ur-
ban Region Function Recognition (URFR) requires LLMs to predict
the urban region function according to the boundary lines and the
POIs located in the region, which evaluates LLMs’ understanding of
urban regions. (4) Administrative Region Determination (ARD) refers
to determining which administrative region a coordinate falls in,
which involves relevant knowledge of the administrative regions
and the ability to associate it with geographical coordinates.

Spatio-Temporal Reasoning. Four tasks are designed to as-
sess this ability of LLMs: (1) Point-Trajectory Relationship Detec-
tion (PTRD) is to determine whether a trajectory passes through
a point; given a point and several regions, (2) Point-Region Rela-
tionship Detection (PRRD) aims to infer which region the point
falls in; (3) Trajectory-Region Relationship Detection (TRRD) pro-
vides a trajectory and some regions, and asks LLMs to determine
which regions the trajectory has passed through chronologically;
(4) Trajectory Identification (TI) requires LLMs to determine if two
point sequences are sampled from the same trajectory. These tasks
evaluate the model’s ability to infer spatio-temporal relationships
between point, line and surface.

Accurate Computation. There are three tasks for this dimen-
sion: (1) Direction Determination (DD) is to determine the direction
between two geographical points, which involves calculating the
corresponding azimuth according to the coordinates; (2) Naviga-
tion (NAV) requires LLMs to plan a shortest route from a source
point to a destination point based on a given road network; (3)
Trajectory-Trajectory Relationship Analysis (TTRA) asks LLMs to
calculate the number of times two trajectories encounter each other
simultaneously in time and space.

Downstream Applications. We assess this ability of LLMs
through four tasks: (1) Flow Prediction (FP) is to predict traffic in-
flows and outflows based on the historical inflows and outflows,
which requires LLMs to model the periodicity and trends of traf-
fic changes; (2) Trajectory Anomaly Detection (TAD) asks LLMs to

detect anomalous trajectories, which requires LLMs to infer the
underlying route and shape from trajectory data; (3) Trajectory
Classification (TC) aims to infer the category of a trajectory, which
requires the model to comprehensively consider the coordinates,
length, speed and other relevant information; (4) Trajectory Predic-
tion (TP) is to predict the next point based on the historical points
of a trajectory, involving the ability to model the trajectory patterns
and the moving speed.

3 EXPERIMENTS
We conduct extensive experiments on STBench to evaluate the
spatial-temporal ability of LLMs and to investigate if in-context
learning, chain-of-thought and fine-tuning can improve the perfor-
mance.

3.1 Experimental setup
Evaluated models. We evaluate the performance of two closed-
source model, i.e., ChatGPT and GPT-4o, and a set of open-source
models: Llama-2 [25], Vicuna3, ChatGLM2, ChatGLM3 [7, 29],
Gemma [18], Phi-2, Mistral [10], Falcon [1], Deepseek [3],
Qwen [2] andYi [28]. The detailed versions of the evaluatedmodels
can be found in [13].

Metrics. We adopt accuracy for tasks other than trajectory pre-
diction and flow prediction. For trajectory prediction, we report
absolute error, i.e., the distance in meters between the predicted
coordinates and ground truth. For flow prediction, we adopt MAE
and RMSE as the metrics.

Experimental details. In our experiments, we adopt the pre-
cision of FP32 for all LLMs. For other hyperparameters, we adopt
the default value of each model. All experiments of open source
models are conducted on two NVIDIA H100.

3.2 Main results
To investigate the spatio-temporal ability of LLMs, we conduct
experiments to evaluate the performance of all models on each task.
The main results are shown in Table 2. Detailed results on all tasks
can be found in [13]. Some key findings are shown as follows:

Model size is important for knowledge comprehension. For
knowledge comprehension, GPT-4o performs better than ChatGPT
on all tasks, and ChatGPT outperforms other models on most tasks.
The possible reason is that LLMs rely on sufficient parameters to
compress and store knowledge, and ChatGPT/GPT-4o has more
parameters than other evaluated open-source models. We also ob-
serve that Gemma-7B, with the same technology as Gemma-2B but
more parameters, performs better on knowledge comprehension
tasks than Gemma-2B. It also supports our conclusion.

The evaluated models have difficulty in multi-step reason-
ing. The performance of most models on PRRD is much higher
than TRRD. Note that TRRD can be achieved by performing PRRD
for each point in the trajectory, thus it is a multi-step reasoning
task. Although models such as ChatGPT, GPT-4o, and Gemma-7B
can achieve high performance on each step, their performance on
this multi-step task is poor.

3https://lmsys.org/blog/2023-03-30-vicuna/
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Table 2: The performance ofACC,MAE and absolute error (inmeters) on different tasks (bold: best closed-source LLM; underline:
best open-source LLM). ‘-’ denotes the model failed to answer most questions.

Knowledge Comprehension Spatio-temporal Reasoning Accurate Computation Downstream Application
PCR URFR ARD PTRD PRRD TRRD DD NAV FP(MAE) TAD TP(meters)

ChatGPT 0.7926 0.3978 0.8358 0.7525 0.9240 0.0258 0.1698 0.4384 37.33 0.5382 -
GPT-4o 0.9588 0.6026 0.9656 - 0.9188 0.1102 0.5434 0.7552 43.25 0.6016 -
ChatGLM2 0.2938 0.2661 0.2176 0.2036 0.5216 0.2790 0.1182 0.2924 63.72 0.5000 231.2
ChatGLM3 0.4342 0.2704 0.2872 0.3058 0.8244 0.1978 0.1156 0.2576 59.24 0.5000 224.5
Phi-2 - - 0.2988 - - - 0.1182 0.2912 34.82 0.5000 206.9
Llama-2-7B 0.2146 0.2105 0.2198 0.2802 0.6606 0.2034 0.1256 0.2774 53.79 0.5098 189.3
Vicuna-7B 0.3858 0.2063 0.2212 0.3470 0.7080 0.1968 0.1106 0.2588 48.19 0.5000 188.1
Gemma-2B 0.2116 0.1989 0.1938 0.4688 0.5744 0.2014 0.1972 0.2592 41.79 0.5000 207.7
Gemma-7B 0.4462 0.2258 0.2652 0.3782 0.9044 0.1992 0.1182 0.3886 31.85 0.5000 139.4
DeepSeek-7B 0.2160 0.2071 0.1938 0.2142 0.6424 0.1173 0.1972 0.3058 56.89 0.5000 220.8
Falcon-7B 0.1888 0.1929 0.1928 0.1918 0.4222 0.2061 0.1365 0.2610 62.52 0.5000 3572.8
Mistral-7B 0.3526 0.2168 0.3014 0.4476 0.7098 0.0702 0.1182 0.3006 42.59 0.5000 156.8
Qwen-7B 0.2504 0.2569 0.2282 0.2272 0.5762 0.1661 0.1324 0.3106 53.49 0.5049 205.2
Yi-6B 0.3576 0.2149 0.1880 0.5536 0.8264 0.1979 0.1284 0.3336 52.03 0.5000 156.2

(a) (b) (c)

Figure 1: The performance of ACC and absolute error (in meters) in (a) in-context learning evaluation, (b) chain-of-thought
evaluation, (c) fine-tuning evaluation.

Accurate computation and downstream tasks are more
challenging. As shown in Table 2, the accuracy of all models ex-
cept GPT-4o is below 45% on accurate computation tasks, which is
because LLMs are mainly trained on nature language corpus and
are not good at computation. We also find that GPT-4o outperforms
other LLMs by a large margin, which is consistent with the signif-
icant improvement in mathematical ability of GPT-4o. Moreover,
the performance of evaluated models is also poor on downstream
tasks, due to the lack of task-specific expert knowledge.

A suitable model is more important than larger param-
eters for spatio-temporal mining. We observe ChatGPT and
GPT-4o perform poorer than most open-source models on TRRD
and TI, despite having a larger number of parameters. For FP, the
lightweight model, Phi-2, with only 2.7B parameteres, performs
better than all models except Gemma-7B. Although LLMs have the
potential to analyze spatio-temporal data, not all models have been
adequately trained on relevant corpora and learned corresponding
spatio-temporal ability, regardless of the model size. It leads to a
significant difference in performance between different models for
many spatio-temporal tasks.

3.3 In-context learning evaluation
Whereas the results in many scenarios are poor, we conduct ex-
periments to investigate if in-context learning can improve the

performance of LLMs on STBench. Specifically, we select six tasks
where the evaluated models performed poorly and we adopt two-
shot prompting. Due to the heavier computation cost caused by the
longer context, we only evaluate one closed-source model, Chat-
GPT, and two open-source models with different model sizes, i.e.,
Gemma-2B and Llama-2-7B. The results are shown in Fig. 1(a).

The performance of ChatGPT has been greatly improved with
in-context learning. For instance, its accuracy on PI and DD has
increased from 58.64% to 76.30%, and from 16.98% to 43.16%, re-
spectively. Moreover, the two-shot prompting also constrains the
output, e.g., ChatGPT refuses to answer the questions of trajectory
prediction in Table 2, but its absolute error is only 119.4 meters with
two-shot prompting. However, in-context learning is useless for
Gemma-2B and Llama-2-7B, which is consistent with the phenome-
non that in-context learning is less effective for smaller LLMs [27].

3.4 Chain-of-thought evaluation
We further conduct experiments to verify if chain-of-thought (CoT)
is effective on STBench. Specifically, we evaluate ChatGPT and
Gemma-2B with CoT prompting on several tasks that involve multi-
step reasoning: URFR, TRRD, TTRA and TC. For each task, we add
two samples with a detailed reasoning process in the context. The
results are shown in Fig. 1(b).

3
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Table 3: The performance ofMAE and RMSE on traffic pre-
diction (bold: best; underline: runner-up).

Gemma-2B w/ SFT STID PatchTST

Inflow MAE 26.79 38.57 24.43
RMSE 30.87 43.62 28.28

Outflow MAE 25.91 36.96 23.49
RMSE 29.87 42.04 27.25

We observe the performance of ChatGPT increases significantly
in all selected tasks. For instance, its accuracy with CoT prompting
is 52.20% on URFR, much better than 39.78% in Table 2. For Gemma-
2B, the performance on all selected tasks is slightly improved. The
results demonstrate the effectiveness of CoT prompting in spatio-
temporal analysis.

3.5 Fine-tuning Evaluation
We conduct experiments to investigate if supervised fine-tuning
(SFT) can significantly improve the performance of smaller LLMs.
Due to the high computational cost and memory usage, we only
fine-tune a 2B model, i.e., Gemma-2B. To compare the fine-tuned
LLM with existing supervised methods, we train two effective flow
prediction method, i.e., STID [22] and PatchTST [21], on the same
dataset. The results are shown in Fig. 1(c) and Table 3.

The performance on all tasks in Fig. 1 is significantly improved af-
ter fine-tuning. For instance, the accuracy onARD andDD increased
from 19.89% to 91.98%, and from 19.72% to 47.08%, respectively. This
confirms LLMs’ great potential in spatial-temporal analysis. We
also observe that the zero-shot capability of LLMs is surprising that
Phi-2 (without fine-tuning and few-shot prompting) can surpass
the supervised method STID. While Gemma-2B performs poorer
than both STID and PatchTST, it outperforms STID and achieved
comparable performance to PatchTST after supervised fine-tuning.
Overall, the experimental results reveal the bright prospects of
LLMs in spatio-temporal data analysis.

4 CONCLUSION
In this paper, we propose STBench to assess LLMs’ ability in spatio-
temporal analysis. STBench consists of 15 tasks and over 70,000
QA pairs, systematically evaluating four dimensions: knowledge
comprehension, spatio-temporal reasoning, accurate computation,
and downstream applications. We benchmark 13 latest LLMs and
the results show their remarkable performance on knowledge com-
prehension and spatio-temporal reasoning tasks. Our further exper-
iments with in-context learning, chain-of-thought prompting and
fine-tuning also prove the great potential of LLMs on other tasks.
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