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Abstract
Urban prediction tasks, such as forecasting traffic flow, tempera-
ture, and crime rates, are crucial for efficient urban planning and
management. However, existing Spatiotemporal Graph Neural Net-
works (ST-GNNs) often rely solely on accuracy, overlooking spatial
and demographic disparities in their predictions. This oversight
can lead to imbalanced resource allocation and exacerbate existing
inequities in urban areas. This study introduces a Residual-Aware
Attention (RAA) Block and an equality-enhancing loss function to
address these disparities. By adapting the adjacency matrix during
training and incorporating spatial disparity metrics, our approach
aims to reduce local segregation of residuals and errors. We applied
our methodology to urban prediction tasks in Chicago, utilizing
travel demand datasets as an example. Our model achieved a 48%
significant improvement in fairness metrics with only a 9% increase
in error metrics. Spatial analysis of residual distributions revealed
that models with RAA Blocks produced more equitable prediction
results, particularly by reducing errors clustered in central regions ,
supporting more balanced and equitable urban planning and policy-
making.

CCS Concepts
• Information systems→ Data mining; • Computing method-
ologies → Machine learning approaches.
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1 Introduction
Urban prediction tasks, such as forecasting traffic flow, crime rates,
and temperature, play a critical role in urban planning and man-
agement [26]. These tasks benefit from machine learning and deep
learning techniques, particularly Spatio-Temporal Graph Neural
Networks (ST-GNNs), which effectively capture both spatial and
temporal dependencies. By combining Graph Neural Networks
(GNNs) with temporal processing architectures, ST-GNNs model
complex relationships between urban regions and time points, de-
livering more accurate and reliable forecasts.

However, previous ST-GNN models focus exclusively on accu-
racy, neglecting the social implications of their predictions. Figure 1
shows that STGCN predictions in Chicago correlate with minority
rates, resulting in over-predictions in low-minority areas and under-
predictions in high-minority areas [34]. These patterns highlight
spatial disparities, intrinsically tied to demographic segregation, as
illustrated in Figure 1b. Such disparities often stem from biases in
data collection (e.g., over-policing in minority neighborhoods) and
inherent model biases, both of which can amplify inequities [3, 7].

Existing methods mitigate disparities by incorporating demo-
graphic information into model design [36]. However, practical
limitations, such as privacy concerns, restrict the collection and
use of demographic data, leaving disparities within ST-GNNs unad-
dressed [38]. This raises a critical question: How can we improve
equality in ST-GNN predictions without access to protected
group memberships?

This study addresses spatial disparities in ST-GNN models, aim-
ing to reduce spatial segregation and its links to demographic dis-
parities. We propose a Residual-Aware Attention (RAA) Block and
an equality-enhancing loss function. The RAA Block adapts the
adjacency matrix during training, dynamically adjusting spatial
relationships based on residuals to reduce local error segregation.
The loss function integrates mean squared error with metrics like
Moran’s I and Generalized Entropy Index (GEI), penalizing spatial
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(a) STGCN prediction residual
distribution in Chicago.
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(b) Minority rate distribution in
Chicago.

Figure 1: Comparison between prediction residual and de-
mographic distributions. (a): The red colors represent under-
prediction while the blue colors represent over-prediction.
(b): Distribution of the racial minority groups in Chicago,
defined as the percentage of the non-white population in
each community area.

clustering of residuals and redundancy. Our method mitigates dis-
parities within the model, supporting equitable urban planning and
policy-making.

Applied to urban prediction tasks in Chicago using datasets in-
cluding travel demand, crime, and accident reports, our approach
achieved a 48% improvement in fairness metrics with only a 9%
increase in error metrics. Spatial analysis demonstrated that RAA
Blocks reduce clustered prediction errors, particularly in central
regions. Overall, our methodology effectively mitigates prediction
disparities with minimal accuracy trade-offs, fostering fairer re-
source allocation and equitable urban development.

Our contributions are summarized as follows:

(1) We introduce residuals as indicators of fairness in predictions,
demonstrating their utility in highlighting disparities in ST-
GNN model outputs.

(2) We design the RAABlock and propose an equality-enhancing
loss function that incorporates spatial and demographic dis-
parity metrics. This function balances prediction accuracy
with fairness, ensuring that urban prediction models do not
entrench existing spatial disparities. We modify the message-
passing mechanism in GNNs to ensure the propagation of
information that reduces bias.

(3) We conduct a comprehensive case study applying ourmethod
to urban prediction tasks in Chicago using the travel demand
as an example. Our model identifies and mitigates prediction
disparities without relying on demographic data, leading to
more balanced resource allocation and fairer urban planning
decisions.

2 Literature Review
2.1 Urban Prediction with GNNs
Recent advancements in GraphNeural Networks (GNNs) havemade
them highly effective in representing spatial data as graphs and

capturing both spatial and temporal dependencies. These capabili-
ties have driven their adoption in urban computing tasks [13, 33].
One prominent application domain is transportation, where GNNs
have been extensively used for tasks such as ride-hailing demand
prediction [8, 29]. For example, Wang et al. [28] tackled the Origin-
Destination Matrix Problem by integrating grid embedding and
multi-task learning modules to capture spatial and temporal at-
tributes. Similarly, Jin et al. [12] used graph convolutional neural
networks with pixel-level representations to model joint latent
distributions of ride-hailing demands.

Beyond ride-hailing, GNNs have been applied to traffic incident
prediction [24], travel time estimation [11], humanmobility analysis
[30], traffic flow prediction [5], and trajectory forecasting [22]. For
instance, Yu et al. [35] proposed a framework combining spatial
graph convolutional networks with spatiotemporal convolutions
to predict traffic accidents, while Fang et al. [5] enhanced GNNs’
depth to extract long-range spatiotemporal dependencies for traffic
flow prediction.

GNN applications extend beyond transportation to public safety
and environmental monitoring [13]. In crime prediction, where
spatiotemporal correlations play a vital role, Zhang and Cheng [37]
developed a framework combining gated networks and localized
diffusion networks to explain temporal and spatial crime propaga-
tions. Similarly, Wang et al. [25] introduced a model with adaptive
region graph learning and homophily-aware constraints to predict
crime patterns. Other applications include urban change detection
[40] and disaster forecasting [6].

Despite their success, most GNN-based urban computation mod-
els prioritize improving prediction accuracy while neglecting fair-
ness issues. This oversight risks propagating algorithmic biases and
exacerbating social disparities.

2.2 Algorithmic Fairness
Fairness in algorithmic systems typically aligns with two key princi-
ples: equality and equity [20]. Equality, or horizontal equity, ensures
equal treatment for all, while equity, or vertical equity, focuses on
providing resources to those in need [18, 32]. These goals are evalu-
ated through Disparate Treatment Analysis, which seeks fair treat-
ment, or Disparate Impact Analysis, which ensures fair outcomes
[20, 21]. This study adopts equality as the primary goal, aiming for
equitable resource allocation across urban regions.

Prediction residuals offer a straightforward measure of algorith-
mic fairness by reflecting under- and over-prediction patterns [14].
This approach aligns with fairness through unawareness, which
avoids using protected attributes in decision-making [4, 15]. In
contrast, fairness through awareness integrates protected attributes
directly into the model [9].

In transportation systems, studies have explored mitigating al-
gorithmic disparities. Zheng et al. [39] proposed using absolute
correlation regularization to address disparities in neural networks.
Similarly, Zheng et al. [38], Zhang et al. [36], and Guo et al. [10]
addressed group fairness in ride-hailing demand predictions but
relied on demographic information, limiting their applicability due
to privacy concerns. These methods fail to address the root causes
of disparities, such as biases in the message-passing mechanisms
of GNNs.
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To overcome these limitations, we pursue fairness through un-
awareness by focusing on the inherent biases in ST-GNN models
without relying on demographic data. By targeting spatially seg-
regated residual patterns, we aim to achieve equality in urban
predictions and address disparities rooted in model design.

3 Problem Description and Preliminaries
3.1 ST-GNN for Forecasting
ST-GNNs have been extensively utilized in urban prediction tasks
[31, 42]. We formulate the ST-GNN framework as follows: Let the
graph be denoted as G = (V, E,A), where V represents the set
of nodes (locations/regions), E denotes the set of edges, and A ∈
R |V |× |V | is the adjacency matrix that encodes the relationships
between nodes.

In this study, we define nodes as regions or census tracts and
establish edges based on the geographic distances between regions.
The adjacency matrix A captures these geographical relationships,
with larger values indicating closer proximities.

The urban spatiotemporal dataset inputs are denoted as X ∈
R |V |×𝑡 , where 𝑡 is the number of time steps. The objective is to
predict the target values Y1: |V |,𝑡 :𝑡+𝑘 for the future 𝑘 time steps,
given historical data up to time 𝑡 , X1: |V |,1:𝑡 . ST-GNN models aim
to learn a mapping function 𝑓𝜃 , parameterized by 𝜃 , such that:

Ŷ1: |V |,𝑡 :𝑡+𝑘 = 𝑓𝜃 (X1: |V |,1:𝑡 ; G) = 𝑓𝜃 (X1: |V |,1:𝑡 ;V, E,A), (1)

where Ŷ1: |V |,𝑡 :𝑡+𝑘 is the predicted target value, typically corre-
sponding to X1: |V |,𝑡 :𝑡+𝑘 in forecasting tasks. Prediction perfor-
mance is measured using residual-based metrics such as Root Mean
Squared Error (RMSE) and Mean Absolute Error (MAE). The predic-
tion residuals are defined as r1: |V |,𝑡 :𝑡+𝑘 = Y1: |V |,𝑡 :𝑡+𝑘 −Ŷ1: |V |,𝑡 :𝑡+𝑘 ,
which we denote as r for brevity.

The loss function used during training typically minimizes RMSE
or MAE to optimize prediction accuracy:

Laccuracy = RMSE(Y, Ŷ) or MAE(Y, Ŷ) . (2)

While these approaches focus on accuracy, few studies have ex-
plored whether they achieve equity in urban planning. Prediction
biases may vary across spatial regions or demographic groups,
potentially resulting in inequitable resource allocation and urban
management outcomes.

3.2 Measurement of Disparity in ST-GNN
Prediction Results

The most straightforward measurement of disparities in ST-GNN
prediction results is the prediction residuals. Disparities are defined
in terms of spatial and demographic factors.

Our models consider spatial disparities to address demographic
disparities. Spatial disparity refers to prediction residuals exhibiting
similar over-prediction or under-prediction patterns within local
neighborhoods, resulting in significant differences across the global
space. For instance, the central region of Chicago is consistently
over-predicted while the southern part is under-predicted, as shown
in Figure 1a. This leads to structural differences that can affect
resource allocation, where over-predicted areas might receive more
resources, and under-predicted areas receive less, raising equality
issues.

Mathematically, multiplying a vector by the adjacency matrix
A aggregates information from neighboring nodes. We define the
spatial disparity 𝐷𝑠 based on the sign-aware residual variance of
the neighboring nodes’ predictions, as shown below:

𝐷𝑠 =
1
|V|

|V |∑︁
𝑖=1

[
(Ar+𝑖 − s̄+)2 + (Ar−𝑖 − s̄−)2

]
, (3)

where r+ and r− represent the positive and negative residuals, s+
and s− are the spatially weighted residuals, and s̄+ and s̄− are their
respective averages. The adjacency matrix A captures the influence
of neighboring nodes, and 𝐷𝑠 summarizes variance in residuals
across neighbors.

Demographic disparity arises when over-prediction correlates
with specific demographic groups, favoring the majority over the
minority group. For instance, spatial disparities often align with
demographic segregation, as seen in Chicago (Figure 1b). We define
demographic disparity 𝐷𝑑 as:

𝐷𝑑 = |Corr(r, 𝑃𝑜𝑝𝑚𝑖𝑛𝑜𝑟 ) | +
��Corr(r, 𝑃𝑜𝑝𝑚𝑎𝑗𝑜𝑟 )�� , (4)

where Corr(r, 𝑃𝑜𝑝𝑚𝑖𝑛𝑜𝑟 ) and Corr(r, 𝑃𝑜𝑝𝑚𝑎𝑗𝑜𝑟 ) are Pearson cor-
relation coefficients between residuals r and the percentages of
minority (𝑃𝑜𝑝𝑚𝑖𝑛𝑜𝑟 ) and majority (𝑃𝑜𝑝𝑚𝑎𝑗𝑜𝑟 ) populations, respec-
tively.

3.3 Attention Mechanism Preliminary
The attention mechanism enhances neural networks by focusing on
relevant parts of the input, enabling models to effectively capture
dependencies in sequential and spatial data.

Given an input data matrix X ∈ R𝑛×𝑑 , where 𝑛 is the number
of elements (e.g., time steps, nodes) and 𝑑 is the feature dimension,
the query (Q), key (K), and value (V) matrices are computed as Q =

XW𝑄 , K = XW𝐾 , and V = XW𝑉 , where W𝑄 ,W𝐾 ,W𝑉 ∈ R𝑑×𝑑𝑘

are learnable parameters, and 𝑑𝑘 is the feature dimension of the
query, key, and value vectors. The attention scores are calculated
using the scaled dot-product of the query and key matrices as:

S =
QK⊤√︁
𝑑𝑘

, (5)

where S ∈ R𝑛×𝑛 quantifies the relevance between input elements,
with higher scores indicating stronger relationships.

The attention weights are obtained by applying the softmax func-
tion to normalize the scores: H = softmax(S), where H represents
the importance of each element in the input.

This mechanism has become a cornerstone of modern neural
networks, significantly improving performance in tasks requiring
an understanding of complex spatial and sequential relationships.

4 Methodology
Our overall framework, depicted in Figure 2, enhances existing
ST-GNN architectures for urban prediction by integrating two key
components to address disparities: 1) The Residual-Aware Atten-
tion (RAA) Block, which dynamically adapts the adjacency matrix
during training to mitigate spatial disparities. This mechanism
leverages residuals to refine spatial relationships within the graph,
reducing local segregation of residuals and errors; 2) An equality-
enhancing loss function that penalizes similar residual patterns in
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Figure 2: Prediction framework with residual aware attention block.

adjacent neighborhoods and incorporates a spatial clustering redun-
dancy metric. By balancing prediction accuracy with spatial and
demographic equality, this function addresses spatial disparities
and, in turn, mitigates demographic disparities.

4.1 RAA Block
The adjacency matrix in GNN structures is crucial for shaping GNN
results by ensuring that neighboring information is shared, leading
to similar feature representations for adjacent nodes. However, this
emphasis on local information can exacerbate spatial disparities, as
discussed in Equation 3.

To adaptivelymitigate these disparities, we incorporate a Residual-
Aware Attention (RAA) Layer that uses residuals from each training
step as inputs, leveraging the attention mechanism described in
Section 3.3. During training, residuals r are used to compute the
query (Q), key (K), and value (V) matrices through linear transfor-
mations. The 𝑡𝑎𝑛ℎ activation function introduces non-linearity and
maps values to the range [−1, 1]:

Q = tanh(Wqr), K = tanh(Wkr), V = tanh(Wvr), (6)

whereWq,Wk,Wv are learnable weight matrices. Based on Equa-
tion 5, the attention scores and attention weights are:

S =
QK⊤√︁
|K|

, H = softmax(S), (7)

where S represents the relative importance between elements, and
H normalizes these scores into probabilities.

The adapted adjacency matrix is then formed by applying an
element-wise Hadamard product between the original adjacency
matrix and the attention weights:

Aadapted = A ⊙ H. (8)

This adapted adjacency matrix is used in the next training epoch,
enabling the model to dynamically adjust spatial relationships
within the graph and reduce the segregation of residuals and errors.

By integrating this adaptive mechanism, the RAA Block effectively
mitigates spatial and demographic disparities in urban predictions.

4.2 Equality-enhancing Loss Function
To address disparities and promote equality in urban prediction,
we propose an equality-enhancing loss function that integrates the
mean squared error (MSE) loss with additional terms accounting
for spatial disparities. The overall loss function is:

Ljoint = Lprediction + 𝜆𝑠𝐷𝑠 + 𝜆𝑑𝐷𝑑 , (9)

where Lprediction represents the MSE loss, and 𝜆𝑠 and 𝜆𝑑 are reg-
ularization parameters balancing the contribution of each term.
These parameters are set to 0.05 by default but can be adjusted for
different datasets.

The term 𝐷𝑠 measures spatial disparity using the sign-aware
residual variance as defined in Equation 3, ensuring that prediction
residuals are evenly distributed across spatial regions. The 𝐷𝑑 term
incorporates fairness metrics, such as Moran’s I or the Generalized
Entropy Index (GEI), to assess spatial clustering or redundancy in
information. These metrics aim to reduce spatial unevenness in
prediction residuals, promoting more equitable outcomes.

By including 𝐷𝑠 and 𝐷𝑑 in the loss function, this approach en-
sures that urban predictionmodels address disparities at both spatial
and demographic levels, supporting equitable resource allocation
and informed urban planning. Details of the𝐷𝑑 metric formulations
are provided in Section 5.3.

5 Experimental Setup
5.1 Urban Data Collections in Chicago
The demographic dataset for this research is sourced from the
American Community Survey (ACS) for the years 2017-2018. The
ACS provides detailed sociodemographic information, including in-
come brackets, age demographics, racial compositions, commuting
modes, and average commuting durations. This data is specific to
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each of the 811 census tracts within Chicago [27, 41]. Key attributes
include total population, age groups, racial composition, education
levels, economic status, and travel information such as commuting
times1.

We use Chicago Data Portal (CDP) 2 to evaluate the effects
of our model. CDP contains the trip records of Transportation
Network Providers (ride-sharing companies) in the Chicago area.
The city of Chicago is divided into 77 zones and the trip requests
with pick-up and drop-off zones are recorded every 15 minutes. We
use 4-month observations from September 1st, 2019 to December
30th, 2019.

We have chosen Chicago as a case study since its heavy spatial
segregation of different racial groups, for which unfair algorithmic
prediction results may lead to even worse segregation. Fig 1b shows
the racial minority rate in Chicago in 2019. It is clear that minority
races cluster around the south and middle-west of the city, while
regions in the north has far less minorities than the other regions.

5.2 Model Comparison
We selected four prevalent ST-GNN models as base models to
demonstrate the effectiveness of our proposed method:

• DCRNN [17] models traffic dynamics using diffusion convo-
lution. It captures spatial dependencies through bidirectional
random walks on the graph and temporal dependencies with
an encoder-decoder architecture and scheduled sampling.

• DSTAGNN [16] learns dynamic association attributes from
data to represent the graph. It employs a multi-head atten-
tion mechanism for spatial variances and handles temporal
dependencies with features of multi-receptive fields.

• STGCN [34] includes two spatio-temporal convolutional
blocks that utilize graph convolutional layers to capture
spatial dependencies and temporal gated convolution layers
for temporal dynamics.

• AGCRN [1] comprises two modules: Node Adaptive Param-
eter Learning, which learns node-specific parameters from
node embeddings, and Data Adaptive Graph Generation,
which generates a graph from the training data. This archi-
tecture effectively captures fine-grained variability in space
and time.

For each model, the performance of the vanilla version will
be compared with the performance of the models with the RAA
block and enhanced loss functions added. The vanilla version model
implementations were based on the repository by Liu et al. [19]3.

5.3 Fairness Metrics
Fairness metrics are crucial for evaluating equality in urban predic-
tion models, addressing both spatial and demographic disparities.
These metrics ensure that models do not exacerbate existing in-
equalities, thereby promoting fair and equitable urban predictions.
In this study, we selected the following fairness metrics to evaluate
three key aspects of residual distributions: entropy, correlation with
demographic features, and spatial clustering.

1https://www.census.gov/programs-surveys/acs/data.html
2https://data.cityofchicago.org/Transportation/Transportation-Network-Providers-
Trips/m6dm-c72p
3https://github.com/liuxu77/LargeST/

5.3.1 Generalized Entropy Index (GEI). It is developed by Speicher
et al. [23] and originates from economic inequality indices and is
used to compare unfair algorithmic treatments across a population.
In this study, GEI reflects spatial disparity rather than demographic
disparity.

We calculate the GEI of prediction residuals, where a smaller
value indicates a more even distribution of residuals across all
units of analysis, resulting in fairer predictions. Denote a non-
negative transformation of the residuals 𝑏𝑖 = 𝑟𝑖 +𝑚,where𝑚 ∈
R+ such that 𝑏𝑖 ≥ 0 ∀𝑖 , and 𝑟𝑖 represents the residual at node 𝑖 . The
formulation is as follows:

𝐺𝐸𝐼 =
1

|V|𝛼 (𝛼 − 1)

|V |∑︁
𝑖=1

[(
𝑏𝑖

𝑏

)𝛼
− 1

]
, (10)

The parameter 𝛼 controls the emphasis on larger residuals, and we
set 𝛼 = 2 in this research.

5.3.2 Moran’s I. It measures spatial autocorrelation, indicating
how similar values are clustered or dispersed across space. It ranges
from -1 (dispersion) to 1 (clustering), with 0 indicating random
distribution. Lower values are preferred to reduce spatial clustering.

The weight𝑊 is computed as:𝑊 =
∑𝑁
𝑖=1

∑𝑁
𝑗=1 𝑎𝑖 𝑗 , where 𝑎𝑖 𝑗 are

elements of the adjacency matrix A, and 𝑁 is the number of nodes.
Moran’s I is then calculated as:

𝐼 =
𝑁

𝑊

∑𝑁
𝑖=1

∑𝑁
𝑗=1 𝑎𝑖 𝑗 (𝑟𝑖 − 𝑟 ) (𝑟 𝑗 − 𝑟 )∑𝑁
𝑖=1 (𝑟𝑖 − 𝑟 )2

, (11)

where 𝑟𝑖 and 𝑟 𝑗 are residuals at nodes 𝑖 and 𝑗 , and 𝑟 is the residual
mean. In order to ensure non-negative values for the loss function,
we adjust as: 𝐼∗ = 𝐼 + 1. This adjustment supports penalizing spatial
clustering in our loss function.

5.3.3 Scaled Disparity Index (SDI). While we do not incorporate
demographic disparities in model training, we still need to mea-
sure if mitigating spatial disparities also reduces demographic dis-
parities. Hence, we propose using the Pearson correlation coeffi-
cients between prediction residuals and the minority populations
(Corr(r, 𝑃𝑜𝑝𝑚𝑖𝑛𝑜𝑟 )) and residuals and the majority populations
(Corr(r, 𝑃𝑜𝑝𝑚𝑎𝑗𝑜𝑟 )) to assess fairness.

To quantify disparity, we introduce the SDI:

𝑆𝐷𝐼 =
|ΔCorr|

|Corrminor | + |Corrmajor |
·
√︃
|Corrminor · Corrmajor |, (12)

The first term of the SDI normalizes the disparity by taking
the difference between Corr(r, 𝑃𝑜𝑝𝑚𝑖𝑛𝑜𝑟 ) and Corr(r, 𝑃𝑜𝑝𝑚𝑎𝑗𝑜𝑟 )
and scaling it by the sum of their absolute values. The geometric
mean of Corr(r, 𝑃𝑜𝑝𝑚𝑖𝑛𝑜𝑟 ) and Corr(r, 𝑃𝑜𝑝𝑚𝑎𝑗𝑜𝑟 ) then adjusts this
normalized disparity by accounting for the magnitude of the corre-
lations. This scaling is crucial, as it distinguishes between scenarios
where correlations have different magnitudes but similar patterns
of disparity.

Ultimately, the SDI yields non-negative values, with smaller
values indicating greater fairness in our context. The SDI can also be
extended to compare other advantaged and disadvantaged groups,
such as evaluating equality between poor and rich communities.
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Models Original model Residual-Aware Attention Variants

MAE SMAPE GEI SDI Moran’s I Variants MAE SMAPE GEI SDI Moran’s I

DCRNN 8.092 0.458 1.28 0.2 0.182 RAA block + 𝐷𝑠 7.492↓7% 0.478↑4% 1.106↓13% 0.16↓20% 0.068↓62%
+ loss with Moran’s I 8.911↑10% 0.555↑21% 1.148↓10% 0.183↓8% −0.135↓174%
+ loss with GEI 7.608↓5% 0.483↑5% 1.2↓6% 0.072↓64% 0.046↓74%

DSTAGNN 8.564 0.425 1.383 0.308 0.542 RAA block + 𝐷𝑠 8.185↓4% 0.456↑7% 1.2↓13% 0.269↓12% 0.436↓19%
+ loss with Moran’s I 8.509↓0% 0.448↑5% 2.862↑106% 0.281↓8% 0.558↑2%
+ loss with GEI 9.555↑11% 0.447↑5% 0.434↓68% 0.238↓22% −0.021↓103%

STGCN 6.948 0.428 1.506 0.337 0.394 RAA block + 𝐷𝑠 7.329↑5% 0.538↑25% 1.075↓28% 0.235↓30% 0.01↓97%
+ loss with Moran’s I 7.885↑13% 0.506↑18% 1.692↑12% 0.106↓68% 0.201↓48%
+ loss with GEI 9.349↑34% 0.476↑11% 0.35↓76% 0.056↓83% −0.108↓127%

AGCRN 6.988 0.425 1.265 0.316 0.064 RAA block + 𝐷𝑠 7.039↓0% 0.465↑9% 0.975↓22% 0.007↓97% 0.019↓70%
+ loss with Moran’s I 7.393↑5% 0.49↑15% 0.978↓22% 0.07↓77% −0.034↓153%
+ loss with GEI 8.419↑20% 0.49↑15% 0.373↓70% 0.084↓73% 0.04↓37%

Table 1: Comparison of Models with different Residual-Aware Attention versions

5.4 Error Metrics
We also evaluate prediction accuracy using common error metrics:
the Symmetric Mean Absolute Percentage Error (SMAPE) and the
Mean Absolute Error (MAE). The SMAPE is given by:

SMAPE =
1
𝑁

𝑁∑︁
𝑖=1

2 |𝑦𝑖 − 𝑦𝑖 | + 𝜖

|𝑦𝑖 | + |𝑦𝑖 | + 𝜖
, (13)

where 𝑦𝑖 and 𝑦𝑖 are the predicted and true values, 𝑁 is the number
of observations, and 𝜖 is a small constant to prevent division by
zero.

Similarly, the MAE is defined as:

MAE =
1
𝑁

𝑁∑︁
𝑖=1

|𝑦𝑖 − 𝑦𝑖 | , (14)

providing the average magnitude of prediction errors.
For all metrics (GEI, Moran’s I, SDI, SMAPE, MAE), lower values

indicate better performance.

6 Results and Analysis
6.1 Overall Performance
The results are presented in two parts: the first evaluates the ac-
curacy and fairness performance of the original vanilla models
compared to the RAA-enhanced model variants, while the second
explores the impact of the RAA block, sign-aware residual variance,
and Moran’s I or GEI metrics through an ablation study.

We evaluate three RAA-enhanced variants for all four base mod-
els in Section 5.2, differentiated by the 𝐷𝑑 term in the loss function:

(1) RAA block with 𝐷𝑠 in the loss function;
(2) RAA block with 𝐷𝑠 and Moran’s I as 𝐷𝑑 ;
(3) RAA block with 𝐷𝑠 and GEI as 𝐷𝑑 .
Table 1 summarizes the accuracy and fairness metrics for each

model and its variants. The base model metrics are shown on the
left, while RAA-enhanced variants are on the right. Improvements
are highlighted in green, and declines in red, with percentages
indicating the magnitude of change compared to the base model.
All experiments were performed on a machine running Ubuntu
22.04, equipped with an Intel(R) Core(TM) i9-10980XE CPU @
3.00GHz, 128GB RAM, and an NVIDIA GeForce RTX 4080 GPU.

In general, introducing the RAAblocks and the equality-enhancing
loss functions improved fairness metrics compared to the base mod-
els. On average, GEI, SDI, and Moran’s I decreased by 18%, 47%, and
80%, respectively. Across 12 RAA experiments, 10 showed reduced
values for all fairness metrics, and all achieved lower SDI. These
results highlight the effectiveness of the RAA modules. Averaging
the percentage changes for each RAA variant shows reductions of
40%, 37%, and 67%, respectively. The variant combining the RAA
block with GEI as 𝐷𝑑 exhibited the best fairness improvement.
Among the four GNN models, DCRNN and AGCRN with RAA
blocks demonstrated the most consistent improvements, achieving
reductions across all fairness metrics in all three variants. AGCRN,
in particular, showed the highest overall fairness improvements,
demonstrating that reducing spatial disparities can also mitigate
demographic disparities.

We observed a trade-off between accuracy and fairness. Among
the 12 experiments, all achieved improvements in at least one fair-
ness metric while experiencing slight decreases in error metrics.
This aligns with the project’s objective of reducing prediction error
variances at a minimal cost to accuracy. Notably, the percentage
increases in MAE (7%) and SMAPE (12%) were significantly lower
than the fairness improvements. These results suggest that fairness
improvements can be achieved with minimal accuracy trade-offs.
Furthermore, in several cases, adding RAA blocks and regulariza-
tion terms improved both accuracy and fairness. This phenomenon
is attributed to Model Multiplicity or Under-Specification, where the
complex nature of the loss function enables the model to balance
multiple objectives during training [2].

6.2 Residual Spatial Distribution
To understand the effect of the RAA modules on the residual spa-
tial distributions, we have plotted the average residuals at each
community area on the map, as shown in Figure 3. The red colors
represent positive residuals, or under-prediction, while the blue
colors representing the opposite. Darker colors demonstrate larger
residuals.

Comparing the spatial distribution of residuals between the orig-
inal model and models with RAA modules, we observe that the
latter produces more equitable prediction results, as indicated by
the less prominent residual clusters on the map. Models with RAA
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(a) STGCN Residual Distribution
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(b) DCRNN Residual Distribution

Figure 3: Residual spatial distribution in Chicago.

blocks are effective in reducing errors concentrated in central city
regions. For instance, in the case of the STGCN model shown in
Figure 3a, significant over-prediction occurs in central Chicago.
However, models with the RAA block and Moran’s I in the loss
function display a much smoother residual distribution. Although
the STGCN model with GEI as a regularization term 𝐷𝑑 still ex-
hibits some clustering of large residuals in the central region, the
residual signs are more heterogeneous, indicating reduced spatial
autocorrelation.

It is also worth noting that, although RAA blocks demonstrate
some effectiveness in reducing disparities in the residual spatial dis-
tribution, their effectiveness is model-dependent. There is a trade-
off between residual clustering, variance, and the imbalance be-
tween over- and under-predictions. It is challenging for a single
model to improve all three aspects simultaneously, which explains
the varied performances of different models on the map and in
terms of different fairness metrics.

6.3 Ablation Study
An ablation study is a method used in machine learning to evaluate
the impact of individual components on a model’s performance. By
systematically altering specific elements and observing changes in
performance metrics, researchers can identify which components
are essential. We conducted 6 ablation cases in total, corresponding
to:

• RAA block: adding RAA block to the architecture alone;

• RAA block + 𝐷𝑠 : adding the RAA block to the architecture
and adding the 𝐷𝑠 regularization term in the loss function;

• RAA block + Moran’s I: adding the RAA block to the ar-
chitecture and adding the Moran’s I metric as the 𝐷𝑑 term
in the loss function;

• RAA block + GEI: adding the RAA block to the architecture
and adding the GEI metric as the𝐷𝑑 term in the loss function;

• RAA block + 𝐷𝑠 + Moran’s I: adding the RAA block to the
architecture, adding the 𝐷𝑠 term and the Moran’s I metric
as the 𝐷𝑑 term to form the Equation 9;

• RAA block+ 𝐷𝑠 + GEI : adding the RAA block to the archi-
tecture, adding the 𝐷𝑠 term and the GEI metric as the 𝐷𝑑
term to form the Equation 9.

No. Model Variants MAE SMAPE GEI SDI Moran’s I
1 Original 6.948 0.428 1.506 0.337 0.394
2 RAA block 7.830 0.475 0.402 0.154 -0.000
3 RAA block + 𝐷𝑠 7.257 0.474 1.854 0.140 0.212
4 RAA block + Moran’s I 10.465 0.470 0.842 0.151 0.251
5 RAA block + GEI 8.028 0.525 0.525 0.044 -0.136
6 RAA block + 𝐷𝑠 + Moran’s I 7.924 0.508 1.461 0.015 0.012
7 RAA block + 𝐷𝑠 + GEI 9.349 0.476 0.350 0.056 -0.108

Table 2: Ablation study of our designed modules using the
STGCN model.

To illustrate the effect of model architecture design choices, we
conducted the aforementioned ablation study in the context of the
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STGCN model, as shown in Table 2. The ablation study validates
each strategy we have introduced.

First, the RAA block significantly improves fairness metrics com-
pared to the original model, although it sacrifices accuracy. Com-
paring Model 1 and Model 2 from Table 2, we observe reductions
in GEI, SDI, and Moran’s I, indicating reduced residual variances,
correlations to demographics, and spatial autocorrelation. This sup-
ports the hypothesis that using residuals to calculate the Attention
map helps direct the model toward more equitable results. More-
over, both spatial and demographic disparities could be mitigated
using this method.

Second, adding the 𝐷𝑠 term improves accuracy but trades off
with fairness results. This is demonstrated by comparing three pairs
of models: Model 2 and Model 3, Model 4 and Model 6, and Model
5 and Model 7. Models with 𝐷𝑠 regularization show at least one
lower accuracy metric compared to those without. The 𝐷𝑠 term
impacts error metrics because it separately calculates the variance
of positive and negative residuals, effectively weighting errors more
heavily in the loss function, causing the model to focus more on
accuracy.

Lastly, adding 𝐷𝑠 and 𝐷𝑑 terms improves the corresponding fair-
ness metrics. Comparing between Model 2 and Model 5, as well
as Model 3 and Model 7, we see that introducing GEI in the loss
function as a regularization term significantly enhances the GEI
performance of model predictions. On the other hand, comparing
between Model 2 and Model 4 as well as Model 3 and Model 6, we
see that the Moran’s I metric as the 𝐷𝑑 term is less effective in
improving the output Moran’s I metric, but can help with other
fairness metrics. Thus, over-emphasizing any one metric can lead
to worse results in others. It is crucial to balance multiple objec-
tives in the loss function to avoid such scenarios. In our case, this
means ensuring similar regularization weights for both accuracy
and fairness terms.

7 Discussion and conclusions
Previous urban prediction work prevalently built on ST-GNNs fo-
cuses solely on accuracy, neglecting social impacts. By focusing on
residuals as indicators of fairness, we effectively highlight dispar-
ities in traditional ST-GNN outputs. This study addresses spatial
and demographic disparities in urban prediction tasks by develop-
ing an RAA Block and an equality-enhancing loss function. Our
approach, integrated into existing ST-GNNs, dynamically adjusts
spatial relationships during training, mitigating spatial disparities.

Applied to urban prediction tasks in Chicago, our methodology
demonstrates significant improvements both in fairness metrics
and error metrics. This shows that reducing spatial disparities can
also help mitigate demographic disparities. Moreover, our approach
reduces the local segregation of residuals and errors. Spatial analy-
sis of residual distributions shows that models with RAA Blocks
effectively reduced clustered prediction errors in central regions.
Through the comprehensive case study in Chicago, we demon-
strate the effectiveness of our approach in mitigating prediction
disparities for future equitable urban city management.

However, the RAA Block’s effectiveness is model-dependent, and
there is a trade-off between residual clustering, variance, and the

balance of over- and under-predictions. Future work should opti-
mize these factors to enhance performance. Although our approach
does not rely on demographic data, incorporating such information
when available could provide a more comprehensive understanding
of fairness in urban predictions.
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