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Abstract
Epidemic outbreaks spread through networked interactions, making

graph-based modeling essential for effective intervention strategies.

In this study, we propose EpiAdv, a scalable approach that integrates

a modified Susceptible-Infected-Recovered (SIR) model with graph

adversarial attack techniques to control infection spread on time-

varying graphs. EpiAdv dynamically adjusts node states or edge

weights using gradient descent, optimizing an objective function to

balance infection reduction and intervention. Experimental results

show that EpiAdv significantly outperforms baseline methods, such

as expert-based and degree-based heuristics, in reducing infection

rates while minimizing isolation costs. Furthermore, adaptability

tests demonstrate the robustness of EpiAdv across different in-

tervention timing scenarios, providing an effective and efficient

framework for managing epidemics in dynamic networks.
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1 Introduction
Pandemics have consistently posed significant threats to global

public health, evidenced by historical outbreaks such as SARS, the

COVID-19 pandemic, and seasonal influenza. While these events

vary in severity, they share common characteristics: rapid trans-

mission, substantial morbidity and mortality, and the capacity to

overwhelm healthcare systems. Similar to the COVID-19 crisis, pan-

demics frequently disrupt social and economic structures [16, 19],

calling for timely and effective interventions. However, control-

ling pandemics presents multifaceted challenges, underscoring the

urgent need for innovative approaches to intervention strategies.

Interventions such as city lockdowns, quarantines, hospitaliza-

tions, vaccinations, and mask mandates [30] have been critical in

controlling the spread of diseases. However, the effectiveness of

these measures is often hindered by prolonged implementation

timelines and significant economic costs. To optimize outcomes,
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intervention strategies must involve a meticulous selection of tar-

gets, such as vulnerable populations and high-risk geographic re-

gions. This process heavily relies on expert judgment, which can

be labor-intensive and may introduce delays, affecting the timeli-

ness and scalability of responses in dynamic epidemic scenarios.

Consequently, there is a growing need for data-driven strategies to

enhance adaptability and scalability.

Given that epidemic transmission inherently aligns with graph-

based modeling and involves a sequential decision-making problem,

graph neural networks (GNNs) [11, 29, 31] and reinforcement learn-

ing [27] have demonstrated significant potential for improving the

scalability and precision of epidemic response strategies [4, 8, 17].

Individuals are usually represented as nodes, and their interac-

tions as edges, naturally capturing the networked nature of disease

spread. Targeted interventions, such as reducing social interactions

or implementing quarantines, can be modeled as modifications to

edge weights or network structure. GNNs excel in capturing dis-

ease propagation patterns within these graphs, while reinforcement

learning provides a powerful mechanism for optimizing sequential

intervention decisions over time. However, these methods often

require a large amount of high-quality data for accurate predictions,

which can be difficult to obtain during rapidly evolving outbreaks.

Computational complexity also poses scalability concerns, espe-

cially in large, densely connected graphs.

Our Contributions: To address these limitations, we draw on

the concept of graph adversarial attacks—techniques that manipu-

late graph structures or node features to effectively and efficiently

disrupt the performance of graph-based algorithms [9, 33]. We view

interventions such as quarantines and social distancing as forms of

adversarial manipulation, strategically deployed to control disease

spread. More specifically, our approach integrates a time-varying

SIR model with adversarial, gradient-driven optimization to design

an efficient intervention strategy, which balances infection mitiga-

tion and associated social costs. In this manner, our method not only

reduces reliance on extensive labeled data but also scales efficiently

to large, dynamically evolving networks. In contrast to existing

methods, our framework offers the following key advantages:

(a) Robust Epidemic Modeling: By capturing potential changes

in real-world graph structures, our SIR model more accurately

represents the complex interplay between human contact be-

havior and disease spread.

(b) An Adversarial Lens: Our method uses minimal node isola-

tion to disrupt transmission pathways, thereby maximizing the

impact of limited interventions.

(c) Balanced Intervention Costs: Our method combines infec-

tion rates and isolation overhead into a unified objective, en-

suring an optimal trade-off between public health benefits and

social/economic costs.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Trovato et al.

2 Related Work
Network-Based Epidemic Modeling. Early approaches, includ-

ing classical SIR and SEIR models [1, 6], used differential equations

for smaller or homogeneous contexts. However, with the wide-

spread availability of social network and mobile data, researchers

began incorporating network structures into epidemic modeling

to account for the complex and heterogeneous contact patterns

among individuals [20]. In this context, many static network mod-

els assume that node connections and transmission probabilities

remain unchanged throughout the process [7]. In reality, however,

social interactions evolve over time, thus giving rise to the need for

time-varying network models [15, 26].

Machine Learning for Epidemic Interventions. Recent ad-
vances in big data andmachine learning have driven the exploration

of supervised and reinforcement learning for epidemic intervention

design. Graph Neural Networks (GNNs): Liu et al.[14] review GNN

applications in epidemic tasks, emphasizing the ability to capture

complex relational dynamics but noting significant computational

and data demands. Jhun et al.[8] propose a GNN-based vaccination

strategy that surpasses centrality approaches, albeit with high re-

source costs for large networks. Reinforcement Learning (RL):Mov-

ing beyond pure GNNmethods, Song et al.[24] introduce DURLECA,

a dual-objective RL framework integrating Flow-GNN for inter-

regional mobility management, which relies on robust aggregated

data. Feng et al.[4] present IDRLECA, merging GNN-based models

with individual-level infections to balance epidemic control and

costs, yet it hinges on precise data. Meirom et al. [17] developed a

GNN-RL system for intervention prioritization under partial observ-

ability, though scalability and rapid adaptation remain challenges.

Graph Adversarial Attack. Graph adversarial attack strategi-

cally modifies a network’s structure or node features, often by

editing edges or altering node attributes to degrade the perfor-

mance of models [2, 10, 18, 25]. This adversarial perspective aligns

with resource-constrained real-world scenarios where testing, quar-

antine, or vaccination capacities are limited. To the best of our

knowledge, our work presents the first study for applying graph

adversarial attacks to epidemic interventions.

3 Problem Definition
We consider a sequence of time-varying graphs {𝐺𝑡 } with a fixed

node set 𝑉 and dynamic edges 𝐸𝑡 . Each edge 𝑒 ∈ 𝐸𝑡 is associated

with a transmission probability 𝑝𝑒 (𝑡) ∈ [0, 1], representing the

likelihood of infection transmission at time 𝑡 . Each node 𝑣 ∈ 𝑉 can

be in one of three states at any time 𝑡 : susceptible (𝑆), infected (𝐼 ),

or recovered (𝑅). The state 𝑆𝑣 (𝑡) of node 𝑣 at time 𝑡 depends on its

own state at time 𝑡 − 1, the states of its neighboring nodes at time

𝑡 − 1, and the interactions through edges in 𝐸𝑡 . Our objective is

to design an intervention strategy that curbs infection spread by

selectively isolating nodes while minimizing the total cost.

4 Methodology
In this section, we present EpiAdv, a novel framework for optimiz-

ing intervention strategies on dynamic graphs. EpiAdv combines a

modified SIR model with a graph adversarial attack formulation to

disrupt transmission pathways while minimizing interventions.

4.1 Infection Forecasting
We propose a modified SIR model [15] on time-varying graphs,

addressing limitations of static contact structures and uniform in-

fection periods. Classical SIR models assume 𝑆 → 𝐼 → 𝑅 transitions

with fixed connectivity and homogeneous infection/recovery dura-

tions, which can oversimplify real-world dynamics. By contrast, our

model tracks evolving edges and assigns node-specific infectious

durations, enabling more realistic forecasts. Formally, we simulate

disease spread on a time-varying graph {𝐺𝑡 }, where nodes progress
from susceptible (𝑆) to infected (𝐼 ) and eventually to recovered

(𝑅). Upon recovery, a node remains in 𝑅 indefinitely, reflecting im-

munity. Such time-dependent edges and heterogeneous infectious

periods are crucial for adaptive, accurate intervention strategies.

Transmission Probability: Each edge 𝑒 = (𝑣,𝑢) ∈ 𝐸𝑡 in the graph

at time 𝑡 is assigned a transmission probability 𝑝𝑒 (𝑡) ∈ [0, 1], repre-
senting the likelihood that infection is passed along that edgewithin

the interval (𝑡 − 1, 𝑡]. As real-world contact patterns vary (e.g., due

to behavior or policy changes), the set of edges 𝐸𝑡 and the proba-

bilities 𝑝𝑒 (𝑡) can change over time. This temporal flexibility is key

to accurately reflecting shifting social structures and intervention

effects. Infection Mechanism: For each node 𝑣 at time 𝑡 , we define

𝐸𝑣 (𝑡) = {𝑒 ∈ 𝐸𝑡 | 𝑒 = (𝑣,𝑢) and 𝑆𝑢 (𝑡 − 1) = 𝐼 } as the set of edges
through which 𝑣 can contract the infection from neighbors that

were infected at time (𝑡 −1). Assuming independence among poten-

tial transmission events, the probability that 𝑣 remains in state 𝑆 at

time 𝑡 is: 𝑃𝑆𝑣 (𝑡) =
∏

𝑒 ∈ 𝐸𝑣 (𝑡 )
[
1−𝑝𝑒 (𝑡)

]
. Thus, the probability that

𝑣 transitions to 𝐼 at time 𝑡 is: 1−𝑃𝑆𝑣 (𝑡) = 1−∏
𝑒 ∈ 𝐸𝑣 (𝑡 )

[
1−𝑝𝑒 (𝑡)

]
.

Once infected, 𝑣 may transmit the pathogen to other susceptible

neighbors in subsequent time steps. Recovery Process: Each infected

node 𝑣 remains infectious for a random duration 𝐷𝑣 , sampled from

a distribution aligned with the disease’s natural history (e.g., geo-

metric, exponential, or gamma). This feature addresses individual

variability in how long people remain contagious, a key limitation

in classical models. Let 𝑇𝑣 denote the infection onset for node 𝑣 . At

(𝑇𝑣+𝐷𝑣), 𝑣 transitions from 𝐼 to 𝑅 and gains immunity permanently,

reflecting the well-established assumption of no reinfection.

Furthermore, we have three modeling assumptions: (a) No Re-
infection: Once a node transitions to𝑅, it stays recovered indefinitely.
(b) Full Observability: We assume node states are fully known. In

reality, data-drivenmethodsmay be required to infer these states. (c)

Dynamic Parameters: The values of 𝑝𝑒 (𝑡) and 𝐷𝑣 maybe informed

by empirical data, and can be adjusted to reflect interventions (e.g.,

isolation, distancing), offering flexible “what-if” analyses.

4.2 Implementing Intervention Strategies from
the Perspective of Graph Adversarial Attack

To effectively control the spread of infection, we frame our inter-

vention strategy within the context of graph adversarial attack.

Graph attack refers to the deliberate modification of a graph’s struc-

ture—through the removal or alteration of nodes and edges—to

influence the outcome of dynamic processes on the graph. Our

approach treats the epidemic control problem as a specific instance

of a graph attack, aiming to minimally perturb the graph structure

to achieve maximal disruption of the infection spread.

In graph adversarial attack, subtle perturbations (e.g., adding

or removing edges) are introduced to degrade the performance of



Efficient Epidemic Intervention Generation: A Graph Adversarial Attack Perspective Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

graph-based machine learning models. Here, we leverage a simi-

lar idea but with a distinctly different goal: protecting the system

by limiting the disease’s ability to propagate, rather than disrupt-

ing it covertly. Specifically, we propose an intervention strategy

represented by an intervention state vector 𝜽 (𝑡) ∈ {0, 1} |𝑉 |
. Each

element 𝜃𝑣 (𝑡) corresponds to the intervention state of node 𝑣 at

time 𝑡 : (a) 𝜃𝑣 (𝑡) = 0: Node 𝑣 is in the no intervention state, and the

transmission probabilities along its edges remain unchanged. (b)

𝜃𝑣 (𝑡) = 1: Node 𝑣 is in the isolated state, and all edges connected

to 𝑣 have their infection probabilities set to zero, effectively pre-

venting any transmission to or from this node. This is analogous to

removing the node in a graph attack. Formally, the transmission

probability 𝑝𝑢𝑣 (𝑡) for an edge (𝑢, 𝑣) at time 𝑡 is given by:

𝑝𝑢𝑣 (𝑡) =
{
𝑝𝑢𝑣, if 𝜃𝑢 (𝑡) = 0 and 𝜃𝑣 (𝑡) = 0,

0, otherwise.

where 𝑝𝑢𝑣 is the original infection probability of the edge (𝑢, 𝑣).
By controlling 𝜃𝑣 (𝑡) for each node over time, the strategy aims

to disrupt the underlying transmission pathways, akin to a strate-

gic adversarial perturbation, but in service of epidemic mitigation

rather than model degradation.

Having established the connection to graph adversarial attack,

we now detail the concrete implementation of our proposed in-

tervention strategy. Specifically, we formulate epidemic control

as a constrained optimization problem designed to minimize in-

fection spread while limiting the extent of interventions. We first

define two competing objectives: (1) reducing overall infection,

and (2) restricting the cost associated with frequent or excessive

interventions. Formally, we seek to minimize the total number of

infections subject to a cap on allowable interventions: 𝜃
individuals

=

argmin𝜃 𝐽
infection

(𝜃 ), subject to 𝐽intervention (𝜃 ) ≤ 𝛾, where 𝛾 is a

predefined upper limit on the total allowable intervention effort. To

make the above constraint more tractable in practice, we combine

infection suppression and intervention limitation into a single cost

function: 𝐽 (𝜽 ) = 𝐽
infection

(𝜽 ) + 𝜆 𝐽intervention (𝜽 ), where 𝜆 > 0 is

a weighting parameter that balances the trade-off between mini-

mizing the epidemic and avoiding overly disruptive interventions.

The infection cost is expressed as 𝐽
infection

(𝜽 ) = ∑𝑇
𝑡=0

∑
𝑣∈𝑉 𝐼𝑣 (𝑡),

where 𝐼𝑣 (𝑡) is the infection state of node 𝑣 at time 𝑡 , and 𝑇 de-

notes the final time step of the simulation; the intervention cost is

expressed as 𝐽intervention (𝜽 ) =
∑𝑇
𝑡=0

∑
𝑣∈𝑉

��𝜃𝑣 (𝑡) − 𝜃𝑣 (𝑡 − 1)
��
, repre-

senting the total number of times nodes switch from no intervention

(𝜃𝑣 = 0) to isolated (𝜃𝑣 = 1) or vice versa. This penalizes strategies

that rapidly toggle node states.

Gradient-Based Optimization.We minimize 𝐽 (𝜽 ) via a gradient
descent approach. Let 𝜂 > 0 be the learning rate, and let ∇𝜽 𝐽 (𝜽 (𝑡))
denote the gradient of 𝐽 with respect to 𝜽 at time 𝑡 . We iteratively

update: 𝜽 (𝑡+1) = 𝜽 (𝑡)−𝜂 ∇𝜽 𝐽 (𝜽 (𝑡)). This procedure systematically

adjusts each node’s intervention state, seeking to reduce infections

while incurring minimal intervention overhead. In contrast to clas-

sical adversarial attacks designed to degrade predictive models, our

framework applies the adversarial perspective constructively, us-
ing minimal “perturbations” (node isolations) to achieve epidemic

suppression instead of disruption.

By casting epidemic mitigation as a constrained optimization and

applying a gradient-based solution, our intervention strategy selec-

tively isolates high-risk nodes with minimal toggling, effectively

balancing epidemiological impact and resource constraints.

5 Experiments
5.1 Experimental Setup

Table 1: Dataset Information.
Dataset Nodes Edges Avg. Degree
E-Network 1,005 25,571 50.8

CA-GrQc 5,242 14,496 5.53

GEMSEC-RO 41,773 125,826 6.02

Real-WorldDatasets.
We evaluated our

proposed algorithm

and baselines on

three real-world

networks that cap-

ture diverse facets of human social interaction. Specifically, we

used CA-GrQc [21], E-Network [12], and GEMSEC-RO [22],

each showcasing distinct topological and structural characteris-

tics while reflecting various modes of social connectivity. Ranging

from around 4,000 to over 40,000 nodes, these networks have been

extensively utilized in prior research on network science and epi-

demiological modeling [23, 32] because they span different domains

and exhibit diverse structural properties (e.g., varying average de-

grees, levels of clustering, and modularity). Such diversity allows

us to evaluate how well our method generalizes across different

contact patterns and scales. Table 1 summarizes key statistics for

each dataset.

Infection Simulation.We employ a modified SIR model [15], as

outlined in the Methodology section, to simulate the spread of in-

fection within the networks. The transmission probability 𝑝𝑒 (𝑡)
for each edge 𝑒 ∈ 𝐸 at time 𝑡 is initialized based on empirical

studies relevant to each dataset. This probability governs the likeli-

hood of disease transmission between connected nodes and may

be influenced by the intervention levels 𝜽 (𝑡). The model iteratively

updates the states of the nodes over discrete time steps, allowing us

to simulate the progression of the epidemic and assess the impact

of various intervention strategies.

Baseline Methods. Although some reinforcement learning meth-

ods [24] have also been developed, their code and datasets were

not provided. Therefore, in this study, we compare our method

with several baselines commonly used in epidemic research: (a)

No Intervention: Serves as the control scenario with no modi-

fications to transmission probabilities. (b) Lockdown [5]: Simu-

lates widespread social distancing measures by uniformly reducing

transmission probabilities across all edges by a fixed percentage.

(c) Expert Random: Selects a subset of nodes for intervention

randomly, guided by expert-defined heuristics. (d) Degree-Sample
[28]: Randomly samples nodes for intervention with probabilities

proportional to their degrees, thereby targeting more connected

nodes with higher likelihood. (e) Degree-Order [3]: Prioritizes

interventions on nodes with larger degrees.

Evaluation Metrics. The performance of each intervention strat-

egy is assessed using the following metrics: (a) Infection Propor-
tion: The proportion of infected individuals relative to the total

number of nodes, calculated as:
𝑁𝐼

𝑁
, where 𝑁𝐼 is the number of

infected nodes and 𝑁 is the total number of nodes in the network.

(b) Isolation Proportion: The proportion of isolated nodes relative
to the total number of nodes, calculated as:

𝑁isolated

𝑁
, where 𝑁

isolated

is the number of nodes isolated due to interventions.

All the baselines and datasets are implemented with the compre-

hensive toolkit EpiLearn [13].
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(a) Scenario Default for GEMSEC. (b) Scenario Late for GEMSEC-RO (c) Scenario Default for CA-GrQc (d) Scenario Late for CA-GrQc
Figure 1: Comparison of intervention performance under Default and Late scenarios.

Table 2: Daily infection (%) | isolation proportion (%).

Method E-Network CA-GrQc GEMSEC-RO

No Intervention 89.35 0.00 96.42 0.00 56.66 0.00

Exp-Random 78.51 67.00 46.48 64.95 39.70 68.23

Degree Sample 85.57 50.65 44.07 49.51 51.94 35.62

Degree Sorting 71.59 9.95 13.91 9.99 11.92 14.98

EpiAdv 3.38 2.68 12.73 6.29 10.61 10.79

5.2 Intervention Performance
Comparison Scenarios. We define 𝑡start as the number of days

that elapse before initiating epidemic interventions following the

identification of the first patient. In this study, we consider the

two scenarios: (a) Scenario-Default
(
𝑡start = 1

)
: Interventions are

initiated immediately upon detection of the outbreak; (b) Scenario-
Late

(
𝑡start = 3

)
: Interventions start three days after detection,

introducing a two-day delay compared to the default scenario.

Effectiveness of EpiAdv.Under Scenario-Default on three datasets
(E-Network, CA-GrQc, GEMSEC-RO), EpiAdv significantly outper-

forms standard methods in reducing infection and isolation, as

shown in Table 2. Specifically, on the E-Network dataset, EpiAdv

reduces the infection proportion to 3.38% and maintains a low iso-

lation proportion of 2.68%, outperforming Degree Sorting, which

results in an infection proportion of 71.59% and an isolation pro-

portion of 9.95%. Similar superior performance is observed on the

other two datasets. These results demonstrate that EpiAdv effec-

tively curtails infection spread while minimizing social disruption,

achieving better outcomes than commonly used methods.

Adaptability of EpiAdv to Different Scenarios. To assess the

adaptability of EpiAdv, we apply two intervention cases—Default

(𝑡start = 1) and Late (𝑡start = 3)—across two datasets that differ

in scale: GEMSEC-RO (∼ 40k nodes) and CA-GrQc (∼ 5k nodes).

From Figure 1, EpiAdv consistently maintains the lowest infection

curves in both Default (𝑡start = 1) and Late (𝑡start = 3) scenarios.

Even when delaying the interventions by two days, EpiAdv curbs

the outbreak and plateaus at a lower level than competing methods,

demonstrating its resilience to suboptimal response times. From

Figures 1b and 1d, EpiAdv consistently performs well on both large

(GEMSEC-RO ∼ 40,000 nodes) and small dataset (CA-GrQc ∼ 5,000

nodes). EpiAdv adapts effectively to networks of different scales

and demonstrates low sensitivity to variations in network topology,

underscoring its scalability and generality.

5.3 Practical Real-World Considerations
Flexible Adjustment of the Infection-Isolation Tradeoff: In
real-world scenarios, the economic and logistical costs of isolation

(a) Daily infections over time. (b) Daily isolations over time.

Figure 2: Daily infection (a) and isolation (b) counts under
different penalty coefficients for isolation.

vary significantly across different regions. Therefore, our model

must adjust the infection-isolation tradeoff according to diverse

real-world conditions. This is achieved by tuning the parameter 𝜆,

which reflects the relative penalty on isolation. As illustrated in Fig-

ures 2(a) and 2(b), a smaller 𝜆 prioritizes reducing infection numbers

and therefore results in more widespread isolation, whereas a larger

𝜆 lowers isolation counts at the expense of slightly higher infec-

tions. This flexibility allows decision-makers to tailor interventions

to diverse economic, social, and epidemiological settings. Real-
World Constraints: Real deployments often operate at coarser

timescales (e.g., weekly updates), facing logistical hurdles, admin-

istrative delays, and infrastructural challenges. EpiAdv’s modular

framework adapts to daily, weekly, or bi-weekly re-optimizations,

flexibly identifying which nodes or groups to isolate. Social and
Ethical Aspects: Minimizing isolation is vital for public trust, eco-

nomic stability, and psychological well-being. EpiAdv targets the

most influential transmission nodes while limiting the size of isola-

tion groups, balancing effective disease control with social costs.

6 Conclusion
In this study, we introduce EpiAdv, an intervention strategy for epi-

demic control on time-varying graphs. EpiAdv integrates amodified

SIR model with graph-based adversarial attack methods, striking a

balance between infection control and intervention costs via gra-

dient descent. Experiments on three real-world networks show it

outperforms expert- and degree-based heuristics, with robustness

tests confirming adaptability to varied intervention timings, while

flexible tuning of the infection-isolation tradeoff accommodates di-

verse conditions and prioritizes minimal isolation to address social

and ethical considerations.Emphasizing scalability and data-driven

methods, EpiAdv addresses key epidemic management challenges,

with potential extensions to heterogeneous node attributes and

multi-layer networks.
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