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Abstract

Recent advancements in multivariate time series forecasting (MTSF)
have increasingly focused on the core challenge of learning de-
pendencies within sequences, specifically intra-series (temporal),
inter-series (spatial), and cross-series dependencies. While extract-
ing multiple types of dependencies can theoretically enhance the
richness of learned correlations, it also increases computational
complexity and may introduce additional noise. The trade-off be-
tween the variety of dependencies extracted and the potential in-
terference has not yet been fully explored. To address this chal-
lenge, we propose GraphSTAGE, a purely graph neural network
(GNN)-based model that decouples the learning of intra-series
and inter-series dependencies. GraphSTAGE features a minimal
architecture with a specially designed embedding and patching
layer, along with the STAGE (Spatial-Temporal Aggregation Graph
Encoder) blocks. Unlike channel-mixing approaches, GraphSTAGE
is a channel-preserving method that maintains the shape of the
input data throughout training, thereby avoiding the interference
and noise typically caused by channel blending. Extensive experi-
ments conducted on 13 real-world datasets demonstrate that our
model achieves performance comparable to or surpassing state-of-
the-art methods. Moreover, comparative experiments between our
channel-preserving framework and channel-mixing designs show
that excessive dependency extraction and channel blending can
introduce noise and interference. As a purely GNN-based model,
GraphSTAGE generates learnable graphs in both temporal and
spatial dimensions, enabling the visualization of data periodicity
and node correlations to enhance model interpretability.

CCS Concepts

• Computing methodologies→ Neural networks; • Informa-

tion systems→ Data mining.
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1 Introduction

Multivariate time series forecasting (MTSF) is pivotal in various
domains such as traffic flow prediction and energy consumption
forecasting. A key consideration in MTSF is effectively modeling
the dependencies within the sequences—specifically the intra-series
(temporal), inter-series (spatial), and potentially cross-series depen-
dencies [18], as shown in Figure 2. Capturing these dependencies
is crucial for understanding the underlying spatial and temporal
relationships in the data, which directly impacts the accuracy of
predictions.

However, many existing models focus on only one type of depen-
dency. Common approaches employ channel-mixing techniques
that project the original time series data 𝑋in ∈ R𝑁×𝑇 (where 𝑁
is the number of nodes and 𝑇 is the length of time series) into
different representations. For instance, some methods transform
𝑋in into 𝐻𝑆 ∈ R𝑁×𝐷 [22], which captures spatial dependencies
among nodes, while others project it into 𝐻𝑇 ∈ R𝑇×𝐷 [15, 30, 39],
emphasizing on temporal dependencies across time steps. These
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Figure 3: Performance of
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ETTm1 and ECL Datasets.

transformations often overlook at least one kind of dependency and
fail to learn the underlying spatial or temporal graph structures [35],
limiting the models’ ability to extract inter-series or intra-series
correlations effectively.

Recentmodels such as UniTST [18] and FourierGNN [34] attempt
to capture multiple types of dependencies, including cross-series
dependencies, by blending the temporal and spatial dimensions.
They reshape the input data𝑋in fromR𝑁×𝑇 into aR𝑁𝑇×1 structure.
While this approach theoretically allows for the simultaneous mod-
eling of all dependencies, it also presents two significant challenges:
(1) increased computational complexity and (2) a heightened risk
of introducing additional noise.

First, mixing the channels may increases computational complex-
ity. The complexity of weight multiplication operations escalates
from 𝑂 (𝑁 2) to 𝑂 ((𝑁𝑇 )2) [18, 34], leading to exponentially higher
computational costs. Consequently, these models often implement
some compression mechanisms, such as router mechanism [38], to
mitigate the computational burden. Despite these efforts, a trade-
off between model size and performance persists. Achieving better
performance frequently requires larger models, indicating that com-
pression techniques may not fully address the efficiency concerns.
To further illustrate this point, we conducted model variants exper-
iments in Section 4.3. As shown in Table 5, our model outperforms
VarC — a channel-mixing model similar to UniTST [18] and Fouri-
erGNN [34], as depicted in Figure 8, while also reducing memory
usage by 83%.

Second, while blending channels allows these models to account
for cross-series dependencies, it may introduce additional noise
into the modeling process. Existing studies have often emphasized
the benefits of capturing cross-series dependencies without fully
considering the potential downsides of added noise. As shown in
Figure 3, aggregating all dependencies may enhance predictive ac-
curacy to some extent (as demonstrated by the improvement of
performance on the ETTm1 dataset). However, it can also lead to
overly complex models that struggle to compensate for the interfer-
ence caused by the introduced noise, resulting in a sharp reduction
in performance on the ECL dataset. This raises a crucial question:
Is it truly necessary to model all these dependencies?

We argue that modeling either a single type of dependency or
multiple dependencies in a coupled manner is inefficient. Recently,
channel-preserving approaches have demonstrated efficiency and
effectiveness [20, 28]. To address the challenges of computational
inefficiency and noise introduced by channel-mixing, we propose

GraphSTAGE, a purely GNN-based model that decouples the learn-
ing of inter-series and intra-series dependencies while preserving
the original channel structures. Unlike existing channel-mixing
approaches, GraphSTAGE maintains the shape of the input data
throughout the training process, thereby avoiding the interference
caused by channel blending. To our knowledge, GraphSTAGE is
the first purely graph-based, channel-preserving model. This de-
sign not only enhances computational efficiency but also reduces
the noise associated with channel blending. More details about the
potential noise introduced by channel blending can be found in
Appendix A. Our contributions are threefold:

• We reflect on the extraction of dependencies in current time
series models and emphasize that existing methods tend
to overlook certain dependencies. Furthermore, we high-
light that channel blending and excessive correlation extrac-
tion can introduce noise, and propose a channel-preserving
framework to enable more accurate and robust dependencies
modeling.

• We propose GraphSTAGE, a fully GNN-based method to
effectively capture intra-series and inter-series dependen-
cies, respectively, while generating interpretable correlation
graphs. Moreover, its decoupled design allows for the inde-
pendent extraction of specific dependencies as required.

• Experimentally, despite GraphSTAGE is structurally simple,
it performs comparably to or surpasses state-of-the-art mod-
els across 13 MTSF benchmark datasets, as shown in Figure
1. Notably, GraphSTAGE ranks top-1 among 8 advanced
models in 22 out of 30 comparisons, with results averaged
across various prediction lengths.

By preserving the original data channels and decoupling de-
pendencies learning, GraphSTAGE overcomes the key limitations
of existing methods, providing a more efficient and interpretable
solution for MTSF.

2 Related Works

Single Dependency Modeling. Traditional multivariate time se-
ries forecasting methods often focus on capturing a single type of
dependency—either temporal (intra-series) or spatial (inter-series).
Deep learning models such as CNNs, RNNs, GRUs and Formers [5,
7, 15, 21, 24, 30, 37, 39] excel at modeling sequential data by captur-
ing temporal dynamics within each series. However, these models
typically treat each spatial node independently, failing to account
for inter-series dependency. On the other hand, models that focus
solely on inter-series dependency, such as GNNs [1] and Form-
ers [2, 13, 22], while effective at capturing spatial correlations, may
not adequately model the temporal correlations within each series.
Consequently, methods that concentrate on one type of depen-
dency may fail to fully capture the complex correlations inherent
in multivariate time series data.

Modeling Combined Dependencies. To address the limitations of
single-dependency extracting models, several GNNs [12, 25, 31–33]
have attempted to extract dependencies in both the temporal and
spatial domains. However, these models often ignore global infor-
mation extraction in either the spatial or temporal domain, focusing
instead on local neighborhood information. Recent approaches have
explored to capture multiple types of dependencies simultaneously
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Figure 4: Overall Structure of GraphSTAGE. The model is composed of an Embedding & Patching layer followed by 𝐿 stacked

STAGE blocks. Each STAGE block employs a decoupled yet unified architecture integrating two key modules: the Intra-GrAG

(Intra-series Pruned-Graph Aggregation), which captures temporal dependency and generates the temporal learnable graph

𝐴𝑇 ; the Inter-GrAG (Inter-series Pruned-Graph Aggregation), which captures spatial dependency and generates the spatial

learnable graph 𝐴𝑆 .

by blending the temporal and spatial dimensions. FourierGNN [34]
and UniTST [18] construct hypervariate graph as input embeddings
to represent time series with a unified view of spatial and tempo-
ral dynamics but overlook the potential interference caused by
channel-mixing. Recognizing this issue, DGCformer [20] identifies
irrelevant nodes in channel-mixing and adopts a grouping mecha-
nism to focus attention on relevant nodes. Crossformer [38] and
CARD [28] propose a two-stage framework to extract inter-series
and intra-series dependencies, applying attention across both di-
mensions and then fuses the results. Building on these insights, we
propose GraphSTAGE, a purely GNN-based model that decouples
the learning of inter-series and intra-series dependencies while
preserving the original input channels to avoid the interference
introduced by channel blending.

3 GraphSTAGE

Problem Definition. Given the historical data X = {x1, . . . , x𝑇 } ∈
R𝑁×𝑇 with 𝑁 nodes and 𝑇 time steps, the multivariate time se-
ries forecasting task is to predict the future 𝐾 time steps Y =

{x𝑇+1, . . . , x𝑇+𝐾 } ∈ R𝑁×𝐾 . This process can be given by:

Ŷ = 𝐹𝜃 (X) = 𝐹𝜃𝑡 ,𝜃𝑠 (X), (1)

where Ŷ are the predictions corresponding to the ground truth Y.
The forecasting function is denoted as 𝐹𝜃 parameterized by 𝜃 . In
practice, the channel-preserving model will be decoupled leverage
a temporal network (parameterized by 𝜃𝑡 ) to learn the intra-series
dependency and a spatial network (parameterized by 𝜃𝑠 ) to learn
the inter-series dependency, respectively [28].

Overall Structure. Based on the motivation of using channel-
preserving strategy to avoid interference introduced by channel-
mixing, we propose GraphSTAGE—a purely GNN-based model
with an architecture that decouples the learning of intra-series

and inter-series dependencies, as illustrated in Figure 4. Our model
comprises two key components: (1) a specially designed embed-
ding and patching layer; and (2) the Spatial-Temporal Aggregation
Graph Encoder (STAGE) block. In the embedding and patching
layer, we introduce a more fine-grained time embedding to fully
utilize the relative positions of data points within an hour as prior
knowledge. In the STAGE block, we design a decoupled framework
to respectively extract temporal and spatial dependencies, with
corresponding learnable graphs that can be visualized to enhance
interpretability. The pseudo-code can be found in Algorithm 1.

3.1 Tokenization via Embedding and Patching

Channel-preserving Embedding Strategy. Most signal intra-series
dependency modeling models regard multiple nodes of the same
time as the (temporal) token. As a result, they project the input
data shaped as 𝑋in ∈ R𝑁×𝑇 into R𝑇×𝐷 , where 𝐷 is the hidden
dimension, and the original spatial dimension 𝑁 is not preserved.
Inspired by inter-series oriented models [22] in MTSF, we preserve
the nodes dimension throughout the model, which proven com-
petent by previous works [2]. Given a time series with 𝑁 nodes,
𝑋 ∈ R𝑁×𝑇 , we divide each univariate time series 𝑥𝑖 into patches
𝑥𝑖𝑝 ∈ R𝑃×𝑠 , with stride 𝑠 and number of patches 𝑃 [23]. A projec-
tion layer is then applied to map all the series into 𝑋𝑝 ∈ R𝑁×𝑃×𝐷 ,
where 𝐷 is the embedding dimension.

Refined Time Embedding to Enhance Relative Positioning. The
effectiveness of static covariates that are available in advance has
been validated in several MTSF models [9, 10, 17]. However, for
datasets with a fixed sampling frequency below one hour (e.g.,
five minutes or fifteen minutes), previous models only embedded
the ‘Hour of Day’ and ‘Day of Week’ information [2], which is
insufficient to reflect the relative position within an hour. To address
this limitation, wemodify existing embeddingmethods by replacing
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the ‘Hour of Day’ embedding with a ‘Timestamp of Day’ embedding.
This allows the embedding layer to adapt to the sample frequency,
providing a more fine-grained time embedding that fully utilize the
relative positions of data points within an hour as prior knowledge.
Additionally, we introduce an learnable embedding to adaptively
capture underlying dependencies. The process is presented below:

𝐻 = Embedding(𝑋𝑝 ) = 𝑋𝑝 + e𝑡𝑜𝑑 + e𝑑𝑜𝑤 + e𝑎𝑑𝑝
1, (2)

where 𝐻 ∈ R𝑁×𝑃×𝐷 contains 𝑁 embedded tokens of dimension
𝐷 , e𝑡𝑜𝑑 ∈ R𝑃×𝐷 and e𝑑𝑜𝑤 ∈ R𝑃×𝐷 are learnable embeddings for
‘Timestamp of Day’ and ‘Day of Week’, respectively. e𝑎𝑑𝑝 ∈ R𝑃×𝐷

is generated using a random tensor method.

3.2 Spatial-Temporal Aggregation Graph

Encoder

Our proposed STAGE block is illustrated in Figure 4. STAGE em-
ploys a decoupled yet unified architecture to aggregate information
learned by Temporal Learnable Graph (𝐴𝑇 ) and Spatial Learnable
Graph (𝐴𝑆 ). The Intra-series Pruned-Graph AGgregation module
(Intra-GrAG) is responsible for extracting intra-series (temporal)
dependencies and generating the 𝐴𝑇 . Similarly, the Inter-series
Pruned-Graph AGgregation module (Inter-GrAG) extracts inter-
series (spatial) dependencies and generates the 𝐴𝑆 .

Decoupled Spatial-Temporal Extraction with Unified Aggregation.

STAGE is capable of learning intra-series and inter-series depen-
dencies separately within a single block by utilizing a decoupled
architecture composed of Intra-GrAG and Inter-GrAG modules.
In STAGE block, the input tensor has dimensions 𝐻 ∈ R𝑁×𝑃×𝐷 ,
where 𝑁 is the number of nodes, 𝑃 is the number of patches, and 𝐷
is the embedding dimension. To learn intra-series dependencies, we
first transpose the input tensor to shape R𝑃×𝑁×𝐷 , swapping the
spatial and temporal dimensions. This restructure allows the model
to focus on temporal relationships within each node across differ-
ent time steps. After learning the intra-dependencies, we transpose
the tensor back to its original shape R𝑁×𝑃×𝐷 to learn inter-series
dependencies, concentrating on the relationships between differ-
ent nodes at each time step. By adopting this approach, we can
employ a unified architecture for both intra-dependency and inter-
dependency learning, simply by changing the order of the input
dimensions.

Furthermore, since STAGE is a purely GNN-based method, the
correlations among nodes or patches (time steps) learned by the
model can be directly visualized, enhancing interpretability and
providing insights into the data periodicity and node correlations.

Learnable Graph Generator for Temporal and Spatial Dimensions.

Learnable Graphs are essential for characterizing both temporal and
spatial similarities. STAGE adaptively learns the graph structures by
generating separate adjacency matrices: 𝐴𝑇 for patches (temporal
dimension) and 𝐴𝑆 for nodes (spatial dimension).

Since STAGE employs a unified aggregation mechanism, the
principles of the Inter-GrAG and Intra-GrAGmodules are analogous.
Therefore, to avoid redundancy, the subsequent discussion will
focus only on the components of the Inter-GrAG module. First, a
Pooling layer downsamples the extracted temporal information.
1The process utilizes the broadcasting mechanism in PyTorch.

We can choose any pooling mechanisms in the temporal dimension
as the Pool operation, such as max-pooling and mean-pooling. To
capture directed similarities among nodes, we apply two Linear
mappings to each node:

𝐸𝑠𝑟𝑐 = L2Norm(𝐻𝑝𝑜𝑜𝑙𝑊𝑝1), 𝐸𝑡𝑔𝑡 = L2Norm(𝐻𝑝𝑜𝑜𝑙𝑊𝑝2),
𝐻𝑝𝑜𝑜𝑙 = Pool(𝐻𝑖𝑛)

(3)

where 𝐻𝑝𝑜𝑜𝑙 ∈ R𝑁×𝐷 . Here, 𝐻𝑖𝑛 ∈ R𝑁×𝑃×𝐷 is obtained by trans-
posing the output of intra-GrAG module, which originally has the
shape R𝑃×𝑁×𝐷 .𝑊𝑝1 ∈ R𝐷×𝑐 ,𝑊𝑝2 ∈ R𝐷×𝑐 are two trainable ma-
trices, and 𝐸𝑠𝑟𝑐 ∈ R𝑁×𝑐 and 𝐸𝑡𝑔𝑡 ∈ R𝑁×𝑐 are the source and target
embedding matrices of all nodes, respectively. The L2 normalization
ensures that each embedding matrices has a unit norm, facilitating
stable training and enhancing model performance.

The directed similarities between each pair of nodes can be
extracted as follows [31]:

𝐴𝑆 = SoftMax(ReLU(𝐸𝑠𝑟𝑐 · 𝐸𝑇𝑡𝑔𝑡 )). (4)

The ReLU activation is used to avoid negative values. SoftMax func-
tion is employed to normalize values in the matrix. In this way, we
obtain the spatial learnable graph 𝐴𝑆 ∈ R𝑁×𝑁 , which serves as a
global similarities matrix. It should be noted that the parameters
of this similarity matrix are derived for each individual sample.
Consequently, when the sample changes, the similarity weights
among different nodes also change.

Pruned-Graph Aggregation Mechanism. In the Intra-GrAG mod-
ule, this mechanism performs graph convolutions on the learned
graph 𝐴𝑇 . In the Inter-GrAG module, it performs graph convolu-
tions on the learned graph𝐴𝑆 , aggregating information from global
nodes while pruning irrelevant or weak connections. The prun-
ing operation reduces noise and enhances the model’s ability to

Algorithm 1 The learning algorithm of GraphSTAGE.

Require: Input historical time series X ∈ R𝑁×𝑇 ; input length 𝑇 ;
prediction length𝐾 ; nodes number 𝑁 ; patches number 𝑃 ; patch
stride 𝑠;embedding dimension 𝐷 ; STAGE block number 𝐿.

1: Base = Mean(X) ⊲ Base ∈ R𝑁×1

2: X = Patching(X) ⊲ X ∈ R𝑁×𝑃×𝑠

3: ⊲ Projecton maps series into embedding dimension 𝐷 .
4: Xp = Projecton(X) ⊲ Xp ∈ R𝑁×𝑃×𝐷

5: ⊲ Refined time embedding to enhance relative positioning.
6: H0 = Embedding(Xp) ⊲ H0 ∈ R𝑁×𝑃×𝐷

7: for 𝑙 in {1, . . . , 𝐿}: ⊲ Run through stacked STAGE blocks.
8: for ⊲ Intra-GrAG module to capture temporal dependency.
9: for Ht

𝑙−1 = IntraGrAG(H𝑙−1 .transpose) ⊲ Ht
𝑙−1 ∈ R𝑃×𝑁×𝐷

10: for ⊲ Inter-GrAG module to capture spatial dependency.
11: for H𝑙 = InterGrAG(Ht

𝑙−1 .transpose) ⊲ H𝑙 ∈ R𝑁×𝑃×𝐷

12: End for

13: Ŷ = Projecton(H𝐿) ⊲ Project tokens to prediction, Ŷ ∈ R𝑁×𝐾

14: Ŷ = Ŷ + Base ⊲ Ŷ ∈ R𝑁×𝐾

15: Return Ŷ ⊲ Return the prediction result Ŷ
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Table 1: Multivariate forecasting results with prediction lengths 𝐾 ∈ {12, 24, 48, 96} for PEMS and 𝐾 ∈ {96, 192, 336, 720} for others
and fixed lookback length 𝑇 = 96. Results are averaged from all prediction lengths. AVG means further averaged by subsets.

Models Ours iTransformer RLinear PatchTST Crossformer TimesNet DLinear SCINet

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ECL 0.166 0.263 0.178 0.270 0.219 0.298 0.205 0.290 0.244 0.334 0.192 0.295 0.212 0.300 0.268 0.365

ETTm1 0.391 0.394 0.407 0.410 0.414 0.407 0.387 0.400 0.513 0.496 0.400 0.406 0.403 0.407 0.485 0.481

ETTm2 0.278 0.325 0.288 0.332 0.286 0.327 0.281 0.326 0.757 0.610 0.291 0.333 0.350 0.401 0.571 0.537

ETTh1 0.445 0.430 0.454 0.447 0.446 0.434 0.469 0.454 0.529 0.522 0.458 0.450 0.456 0.452 0.747 0.647

ETTh2 0.387 0.407 0.383 0.407 0.374 0.398 0.387 0.407 0.942 0.684 0.414 0.427 0.559 0.515 0.954 0.723

ETT (AVG) 0.375 0.388 0.383 0.399 0.380 0.392 0.381 0.397 0.685 0.578 0.391 0.404 0.442 0.444 0.689 0.597

Exchange 0.376 0.409 0.360 0.403 0.378 0.417 0.367 0.404 0.940 0.707 0.416 0.443 0.354 0.414 0.750 0.626

Traffic 0.462 0.294 0.428 0.282 0.626 0.378 0.481 0.304 0.550 0.304 0.620 0.336 0.625 0.383 0.804 0.509

Weather 0.243 0.274 0.258 0.278 0.272 0.291 0.259 0.281 0.259 0.315 0.259 0.287 0.265 0.317 0.292 0.363

Solar-Energy 0.192 0.267 0.233 0.262 0.369 0.356 0.270 0.307 0.641 0.639 0.301 0.319 0.330 0.401 0.282 0.375

PEMS03 0.097 0.210 0.113 0.221 0.495 0.472 0.180 0.291 0.169 0.281 0.147 0.248 0.278 0.375 0.114 0.224

PEMS04 0.090 0.200 0.111 0.221 0.526 0.491 0.195 0.307 0.209 0.314 0.129 0.241 0.295 0.388 0.092 0.202

PEMS07 0.080 0.179 0.101 0.204 0.504 0.478 0.211 0.303 0.235 0.315 0.124 0.225 0.329 0.395 0.119 0.234

PEMS08 0.139 0.220 0.150 0.226 0.529 0.487 0.280 0.321 0.268 0.307 0.193 0.271 0.379 0.416 0.158 0.244

PEMS (AVG) 0.102 0.203 0.119 0.218 0.514 0.482 0.217 0.305 0.220 0.304 0.148 0.246 0.320 0.394 0.121 0.222

1𝑠𝑡 Count 22 4 2 1 0 0 1 0

focus on the most significant correlations. To avoid redundancy
and for simplicity, the subsequent discussion will focus only on the
components of the Inter-GrAG module.

Graph attention network (GAT) [27] is a powerful model for ex-
tracting spatial dependencies, allocating different weights to neigh-
bor nodes. Pruned-Graph Aggregation (PGA) can be regarded as a
Special GATwith three specific improvements: 1) input embeddings
are the extracted temporal embeddings rather than the original fea-
tures; 2) the input nodes learnable graph will be pruned to make
the model concentrate on the most significant connections; 3) the
spatial dependencies among nodes is global rather than localized in
neighborhoods. In this way, PGA incorporates spatial information
effectively and aggregates global information without any prior
knowledge, such as pre-defined static graph. The whole process
can be formulated as below:

𝐻𝑎𝑔 = 𝐻𝑖𝑛𝑊1 + Prune(𝐴𝑆 )𝐻𝑖𝑛𝑊2 + Prune(𝐴𝑆 )𝑇𝐻𝑖𝑛𝑊3, (5)

where𝑊1,𝑊2,𝑊3 ∈R𝐷×𝐷 are trainable matrices and 𝐻𝑎𝑔 ∈R𝑁×𝑃×𝐷 .
The Prune operation retains the top-𝑘 values to focus on the most
significant connections, where 𝑘 = 𝑁 × 𝛼 for Inter-GrAG module
and 𝑘 = 𝑃×𝛼 for Intra-GrAGmodule, with a coefficient 𝛼 between 0
and 1 (e.g., 0.7). After that, a Feed-Forward Network (FFN) and Gate
is employed to obtain the output of Encoders𝐻𝐸 . The FFN processes
the aggregated features to capture nonlinear transformations, while
the gating mechanism controls the flow of information. This gating

enhances the model’s capacity to capture complex dependencies
by adaptively weighing the importance of different features.

In summary, STAGE decouples intra-series and inter-series de-
pendencies within a unified pruned-graph aggregation mechanism,
avoiding computational overhead and potential noise introduced
by channel blending. Its fully graph-based mechanism enhances
interpretability. Further discussion about the variants of STAGE
will be delivered in the Section 4.3.

4 Experiments

4.1 Experimental Setup

Datasets. To validate the performance of GraphSTAGE, we con-
duct extensive benchmarks on 13 real-world datasets, including
ETT (4 subsets), ECL, Exchange, Traffic, Weather, Solar-Energy
datasets proposed in LSTNet [14], and PEMS (4 subsets) collected
by the Performance Measurement System (PeMS) [4] and proposed
in ASTGCN [6].

Experimental Settings. All experiments are conducted on a
single RTX 4090 24GB GPU, and we utilize the Adam [11] optimizer
to optimize the training process. All experiments are repeated five
times and we report the averaged results. The batch size of Graph-
STAGE is consistently set to 16, and the number of training epochs
is fixed to 10. We conduct a grid search to determine the best con-
figuration. We consistently set the embedding dimension 𝐷 to 64,
and the number of STAGE layers between 1 and 2. Normalization
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is skipped before the embedding process for the PEMS and Solar-
Energy datasets, and performed in advance for all other datasets.We
partition the dataset for train-validation-test following the method-
ology established in TimesNet [29], to ensure the comparability of
subsequent experiments. For the forecasting settings, the lookback
length for all datasets is set to 96. The prediction horizon varies
across {12, 24, 48, 96} for the PEMS datasets and {96, 192, 336, 720}
for the other datasets.

Baselines.We have selected seven well-known forecasting mod-
els as our benchmarks, including (1) Transformer-based methods:
iTransformer [22], Crossformer [38], PatchTST [23]; (2) Linear-
based methods: DLinear [36], RLinear [16]; and (3) TCN-based
methods: SCINet [19], TimesNet [29]. Additional comparisons with
four advanced GNNs are provided in Table 2.

4.2 Main Results

Outstanding Performance of GraphSTAGE Across 13 Datasets:

Ranking First in 22 out of 30 Comparisons. Comprehensive forecast-
ing results are presented in Table 1, with the best performances
in red and the second in blue. Lower MSE/MAE values indicate
better prediction performance. The quantitative results reveal that
GraphSTAGE demonstrates outstanding performance across all
datasets, including node-based multivariate time series datasets
(e.g., PEMS, Solar-Energy) and attribute-based multivariate time
series datasets (e.g., ETT, Weather, ECL). GraphSTAGE achieves
the best performance in 22 out of 30 cases, significantly outper-
forming the recent state-of-the-art (SOTA) iTransformer, which
ranks first in only 4 instances. Compared to iTransformer, the MSE
on the ECL, ETT (AVG), Weather, Solar-Energy, and PEMS (AVG)
datasets is significantly reduced by 6.7%, 2.1%, 5.8%, 17.6%, and
14.3%, respectively. Specifically, on the PEMS07 dataset, which has
the largest number of nodes, GraphSTAGE outperforms the recent
SOTA iTransformer by 20.8%, indicating its potential for applica-
tion to larger-scale MTSF tasks, such as extensive grid manage-
ment. Moreover, the recent SOTA iTransformer performs poorly on
attribute-based multivariate time series datasets (e.g., ETT) because
it is a single-dependency learningmodel that focuses solely on inter-
series (spatial) dependencies. In attribute-based datasets, there is
generally no strong direct interaction or correlation between the
attributes (e.g., temperature, wind speed), which makes it more
necessary to extract intra-series (temporal) dependencies. This ob-
servation further validates the effectiveness of GraphSTAGE in
capturing both intra-series and inter-series dependencies, leading
to superior forecasting accuracy across diverse types of multivariate
time series data.

Supplementary Visualization and Additional Baseline Compar-

isons. In order to better compare the models, we present supple-
mentary prediction results visualization for PEMS07 dataset, which
has the largest number of nodes (883 nodes) among all the datasets.
For all baselines, the input length is set to 96, with a forecasting
horizon of 96 time steps. As shown in Figures 5, our predictions
perfectly match the trend of the GroundTruth.

Table 2 contains additional comparison results with advanced
GNNs [3, 8, 31, 34]. The results indicate that GraphSTAGE achieves
top-1 performance in all cases. Notably, on the largest-scale dataset
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Figure 5: Sample visualization across models on PEMS07

dataset, with forecast horizon 96.

Table 2: Additional comparison with advanced GNNs, follow-

ing the setting of TimesNet [29]. The input sequence length

is set to 96 for all baselines. AVG means the average results

from all four prediction lengths: {96, 192, 336, 720}.

Models Ours FourierGNN [34] CrossGNN [8] StemGNN [3] MTGNN [31]

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.391 0.394 0.453 0.448 0.393 0.404 0.550 0.537 0.469 0.446

ETTh2 0.387 0.407 0.543 0.517 0.393 0.418 1.158 0.812 0.465 0.509

Weather 0.243 0.274 0.257 0.305 0.247 0.289 0.289 0.342 0.314 0.355

ECL 0.166 0.263 0.221 0.318 0.201 0.300 0.215 0.316 0.251 0.347

Average 0.297 0.335 0.369 0.397 0.309 0.353 0.553 0.502 0.375 0.414

(ECL with 321 nodes), it outperforms the second-best model (Cross-
GNN) by significant margins, with reductions in MSE and MAE
exceeding 17.4% and 12.3%, respectively.

Model Efficiency and Increasing lookback length. We conducted
a comprehensive comparison of the performance, training speed,
and memory usage of GraphSTAGE against other models on the
ECL dataset, as shown in Figure 6. While GraphSTAGE may not
achieve the best results in terms of training speed and memory
usage, it delivers the best predictive performance. To ensure a fair
comparison, we followed the settings in [2] and set the batch size
of GraphSTAGE to 32. Compared with Crossformer [38], the only
baseline model that learns multiple dependencies, GraphSTAGE’s
memory usage decreased by 47.0%, training time decreased by 60.9%,
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Figure 6: Model efficiency

comparison on ECL dataset
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512} across four datasets.



GraphSTAGE: Channel-Preserving Graph Neural Networks for Time Series Forecasting Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

and predictive performance improved by 36.5%. This significant
reduction in computational resources, combined with an improve-
ment in accuracy, highlights GraphSTAGE’s efficiency. Therefore,
GraphSTAGE effectively balances model size, computational speed,
and predictive accuracy. Our model achieves superior performance
at an acceptable computational cost, demonstrating its practicality
for real-world MTSF tasks.

Additionally, to evaluate the ability of GraphSTAGE to lever-
age increasing lookback length, we conducted experiments on the
ETTm1, PEMS04, Solar-Energy, and ECL datasets. The input lengths
were varied from shorter to longer as 48, 96, 192, 336, 512, while the
forecasting horizon was fixed at the next 96 time steps. As shown
in Figure 7, the model’s performance steadily improves as the input
length increases. Notably, when the input length expands from 48
to 96, the MSE decreases most significantly. This demonstrates that
the Intra-GrAG module of GraphSTAGE effectively captures intra-
series dependencies, enabling it to learn more temporal correlations
from longer input series.

4.3 Model Analysis

Ablation on Correlation Learning Mechanism. To verify the effec-
tiveness of GraphSTAGE components, we provide detailed ablation
studies covering both removing components (w/o) and replacing
components (Replace) experiments. The averaged results are listed
in Table 3. In the replacement experiments, we use the attention
from Crossformer [38], which has been proved more accurate than
vanilla Transformer [26]. Removing any component from Graph-
STAGE results in performance degradation. GraphSTAGE utilizes
Inter-GrAG module on the spatial dimension and Intra-GrAG mod-
ule on the time dimension, generally achieving better performance
than when replaced by the attention from Crossformer.

Table 3: Ablations on the Correlation Learning Mechanism.

We remove or replace components along spatial and temporal

dimensions. The average results of all predicted lengths 𝐾 ∈
{96, 192, 336, 720} are listed here .

Design Spatial Temporal

ETTm1 ECL Traffic Solar-Energy

MSE MAE MSE MAE MSE MAE MSE MAE

GraphSTAGE Inter-GrAG Intra-GrAG 0.391 0.394 0.166 0.263 0.462 0.294 0.192 0.267

w/o Inter-GrAG w/o 0.398 0.400 0.185 0.277 0.478 0.312 0.225 0.292
w/o Intra-GrAG 0.399 0.400 0.186 0.276 0.509 0.320 0.239 0.294

Replace
Inter-GrAG Attention 0.395 0.401 0.168 0.265 0.478 0.303 0.206 0.270
Attention Intra-GrAG 0.403 0.406 0.171 0.268 0.459 0.305 0.206 0.276
Attention Attention 0.395 0.404 0.171 0.269 0.453 0.300 0.204 0.264

Ablation on Embedding&Patching Mechanism. As shown in Ta-
ble 4, we test the components of the Embedding&Patching module

Table 4: Ablations on the Embedding&Patching Mechanism.

The average results of all predicted lengths 𝐾 ∈ {12, 24, 48, 96}
are listed here.

Design

PEMS03 PEMS04 PEMS07 PEMS08

MSE MAE MSE MAE MSE MAE MSE MAE

GraphSTAGE 0.097 0.210 0.090 0.200 0.080 0.179 0.139 0.220

w/o Patching 0.110 0.222 0.100 0.215 0.096 0.199 0.176 0.253
w/o Time Emb. 0.114 0.223 0.099 0.211 0.091 0.193 0.199 0.264

w/o Adaptive Emb. 0.121 0.257 0.098 0.211 0.116 0.221 0.203 0.260

Overall Structure of TsGrapher
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Figure 8: Model Variants. Orig (GraphSTAGE) follows an

input→T→S structure, sequentially extracting temporal

and then spatial dependencies. VarA uses input→S→T, re-

versing the order but remaining sequential. VarB employs

input→S+T, a parallel structure that decouples temporal and

spatial extraction before fusion. VarC utilizes input→S+T+C
(C represents cross-series dependency as shown in Figure 2),

incorporating channel-mixing with a unified architecture

similar to FourierGNN [34], extracting all three types of de-

pendencies within a unified framework.

through three ablation studies: w/o Patching, w/o Time Embedding,
and w/o Adaptive Embedding. The performance of GraphSTAGE
consistently surpasses all of the ablation variants, indicating that
accurate prediction relies not only on the dependency extraction
module but also importantly on the use of prior knowledge.

Variants Comparison. We designed three model variants to vali-
date the effectiveness of our framework. As illustrated in Figure 8,
the proposed GraphSTAGE model is referred to as Orig.

In VariantVarA, we swapped the positions of the Inter-GrAG and
Intra-GrAG modules. The Inter-GrAG module now processes the
original features, rather than the temporal embeddings extracted
by the Intra-GrAG module. The swap aims to validate the rationale
of the proposed sequential architecture. VarA’s performance in
Table 5, shows that the original sequence—inputting the extracted
temporal embeddings into the Inter-GrAG—contributes positively
to the model’s effectiveness.

In Variant VarB, the Inter-GrAG and Intra-GrAG modules are
connected in parallel rather than sequentially. This configuration
investigates whether simultaneous processing of inter-series and
intra-series dependencies impacts model performance compared to
the original sequential architecture. VarB’s performance in Table 5
confirms the sequential structure is more effective than the parallel.

Table 5: Model variants. All models are evaluated on 4 predi-

cation lengths. The best results are in red, the second results

are in blue, and the highest memory usage is in bold.

Models Orig (GraphSTAGE) VarA VarB VarC

Metric MSE MAE Mem (GB) MSE MAE Mem (GB) MSE MAE Mem (GB) MSE MAE Mem (GB)

ETTm1

96 0.319 0.356 0.522 0.326 0.361 0.522 0.316 0.357 0.522 0.325 0.361 0.558

192 0.367 0.381 0.522 0.365 0.383 0.522 0.373 0.390 0.522 0.370 0.387 0.578

336 0.394 0.400 0.522 0.403 0.413 0.522 0.401 0.409 0.522 0.402 0.410 0.578

720 0.482 0.441 0.544 0.456 0.444 0.544 0.476 0.450 0.544 0.458 0.443 0.597

AVG 0.391 0.394 0.528 0.388 0.400 0.528 0.392 0.402 0.528 0.389 0.400 0.578

ECL

96 0.139 0.237 4.066 0.166 0.257 3.920 0.156 0.250 4.110 0.170 0.265 23.703

192 0.155 0.251 4.080 0.172 0.265 3.920 0.169 0.262 4.124 0.175 0.267 23.725

336 0.175 0.272 4.086 0.193 0.285 4.100 0.184 0.277 4.186 0.192 0.285 23.749

720 0.196 0.292 4.144 0.235 0.319 4.120 0.225 0.313 4.200 0.231 0.317 23.794

AVG 0.166 0.263 4.094 0.192 0.282 4.015 0.184 0.276 4.155 0.192 0.284 23.743
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In VariantVarC, we adopt the same channel-mixing architecture
as UniTST [18] and FourierGNN [34], which reshapes the input
data 𝑋in from R𝑁×𝑇 to a R𝑁𝑇×1 structure. This reshaping enables
the coupled learning of three types of dependencies within a unified
structure. By comparing Orig with VarC, we are able to evaluate the
effectiveness of our proposed channel-preserving framework. From
the results in Table 5, we observe that although channel-mixing
demonstrates stronger results in some cases—e.g., on the ETTm1
dataset with an input length of 96 and forecast length of 720, it
outperforms Orig by 5.8%—this improvement comes at the cost of
increased memory usage. Moreover, on larger datasets like ECL,
channel blending leads to an exponential increase in parameters
and a sharp decrease in prediction accuracy. By treating the orig-
inal multivariate time series as a univariate time series of length
𝑁 ×𝑇 , the coupled dependencies learning introduces more inter-
ference and noise compared to the proposed decoupled framework.
This highlights the advantages of our channel-preserving strategy,
which maintains computational efficiency and reduces noise while
effectively capturing the essential dependencies.

The comparisons among these variants validate the design of
GraphSTAGE. The sequential structure in Orig (GraphSTAGE)
proves to be more effective than altering the module order (VarA)
or processing dependencies in parallel (VarB). Additionally, our
channel-preserving framework demonstrates superior scalability
and efficiency compared to the channel-mixing strategy in VarC,
especially on larger datasets. This underscores the importance of
preserving the original data structure and decoupling the learning
of inter-series and intra-series dependencies in MTSF models.

Visualization of Learned Dependencies. We conducted heatmap
visualizations of dependencies on three datasets with different sam-
pling frequencies: ETTm1, ECL, and PEMS04. For ETTm1, the input
length is set to 288, corresponding to 3 days of data, as the sampling
frequency is 15 minutes (288 × 15 minutes = 3 days). For ECL, the
input length is 96, meaning each sample contains 4 days of data,
given the sampling frequency of 1 hour (96 × 1 hour = 4 days).
For PEMS04 with 5-minute intervals, the input length is set to 576,
meaning each sample contains 2 days of input data.

In experiments, we set the patch stride to 2 and randomly se-
lected one Temporal Learnable Graph (𝐴𝑇 ) for each dataset, as
shown in Figure 9. In ETTm1’s 𝐴(1)

𝑇
, peaks occur every 48 patches,

corresponding to 24 hours. Similarly, ECL’s 𝐴(2)
𝑇

shows peak every
12 patches (24 hours), and PEMS04’s 𝐴(3)

𝑇
peaks every 144 patches

(24 hours). These visualizations demonstrate that the periodicity
extracted by the Inter-GrAG module matches the inherent daily
periodicity of each dataset. This match confirms our method effec-
tively captures and visualizes the daily patterns in the data.

Figure 10 presents a randomly selected sample of the Spatial
Learnable Graph (𝐴𝑆 ) along with the corresponding ground truth
of the nodes. In𝐴𝑆 , we observe that nodes 184 and 282 exhibit a high
correlation—as indicated by a bright spot within the green square
in Figure 10 (left), representing a correlation coefficient close to 1.
Conversely, nodes 184 and 83 show almost zero correlation—there
is no bright spot within the orange square in Figure 10 (left), in-
dicating a correlation coefficient close to 0. Correspondingly, as
shown in Figure 10 (right), the ground truth for nodes 184 and
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Figure 9: Visualization of Temporal Learnable Graphs (𝐴𝑇 )

across different datasets (ETTm1, ECL, PEMS04). Each col-

umn represents a randomly selected 𝐴𝑇 from the results of

GraphSTAGE.
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Figure 10: A randomly selected sample of the Spatial Learn-

able Graph (𝐴𝑆 ) on the PEMS04 dataset (left), along with the

corresponding GroundTruth of the nodes (right).

282 behaves very similarly, whereas node 83 displays completely
different trends. This randomly selected visualization demonstrates
that the correlations among nodes in 𝐴𝑆 learned by the Inter-GrAG
module match the ground truth, confirming the effectiveness of
GraphSTAGE in capturing inter-series dependencies.

5 Conclusion

Current models primarily focus on the advantages of channel-
mixing methods for extracting multiple dependencies, often ne-
glecting the noise these approaches can introduce. GraphSTAGE is
the first model to directly address this issue. Through themodel vari-
ants experiments in Section 4.3, we validated the presence of such
interference, underscoring the limitations of excessive dependency
extraction. To mitigate these challenges, GraphSTAGE utilizes
a decoupled architecture that independently extracts inter-series
and intra-series dependencies. As a fully graph-based, channel-
preserving framework, GraphSTAGE maintains the integrity of
the original channel structures, effectively avoiding the interfer-
ence and noise associated with channel blending. Extensive ex-
periments conducted on 13 real-world datasets demonstrate that
GraphSTAGE achieves performance on par with, or surpassing,
state-of-the-art methods. Future research could explore decoupled
extraction of cross-series dependencies and develop inductive mod-
els that maintain channel preservation.
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A Adverse Effects of Channel-Mixing on

Overfitting and Predictive Performance

Noise and interference in channel-mixing methods arise from the
potential learning of pseudo connections when employing a Hy-
pervariate Graph structure to capture dependencies. In particular,
the Hypervariate Graph (R𝑁𝑇×𝑁𝑇 ) is exponentially larger than
our proposed learnable graphs, namely the Temporal Learnable
Graph 𝐴𝑇 ∈ R𝑇×𝑇 and the Spatial Learnable Graph 𝐴𝑆 ∈ R𝑁×𝑁 .
Consequently, channel-mixing models (e.g., FourierGNN [34] and
UniTST [18]) exhibit a higher degree of freedom compared to our
channel-preserving model (GraphSTAGE). This broader flexibility
can lead to numerous pseudo connections (connections between
different nodes across different time steps) and diminish the weights
of genuine inter-series and intra-series connections, often resulting
in overfitting and deteriorated predictive performance.

To verify the hypothesis that channel-mixing can cause overfit-
ting and reduced predictive accuracy, we conducted experiments on
two datasets. Since the dependency-learning components in Fouri-
erGNN [34] and UniTST [18] are different from those in the pro-
posedGraphSTAGE, we used the model variantVarC (see Figure 8)
as the baseline. This variant replaces only the channel-preserving
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Figure 11: Comparison of training and test MSE. The channel-mixingmodel

(VarC) shows lower training MSE but higher test MSE on the ECL dataset

(left) and PEMS03 dataset (right), indicating overfitting.

Legend:

-GraphSTAGE: Channel-preservingmodel. -VarC: Channel-mixing variant.
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Figure 12: Average results over four pre-

diction lengths. GraphSTAGE (channel-

preserving) outperforms VarC (channel-

mixing), validating that channel-mixing

strategies can compromise accuracy.

strategy in the proposed GraphSTAGE with a channel-mixing strat-
egy, while keeping other modules intact.

In our experiments, we trained for 30 epochswith a fixed learning
rate of 1 × 10−3 on the ECL and PEMS03 datasets, both using an
input length 𝑇 equal to the prediction length 𝐾 (𝑇 = 𝐾 = 24). We
ran each experiment five times, holding hyperparameters constant.
As shown in Figure 11, the channel-mixing model (VarC) achieves
lower training MSE but higher test MSE, revealing a clear sign of
overfitting compared to the proposed channel-preserving model
(GraphSTAGE).

To further demonstrate the decrease in predictive performance
on the test set caused by the channel-mixing strategy, we sum-
marize the average results across four prediction lengths on ECL
and ETTm1 datasets. The input sequence length 𝑇 is set to 96,
and the average results are obtained from prediction lengths 𝐾 ∈
{96, 192, 336, 720}. Figure 12 illustrate that the proposed channel-
preserving model (GraphSTAGE) outperforms its channel-mixing
variant (VarC), reinforcing our conclusion that channel mixing can
degrade predictive performance.
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