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Abstract
Dynamic graph learning aims to uncover evolutionary laws in

real-world systems, enabling accurate social recommendation (link

prediction) or early detection of cancer cells (classification). Inspired

by the success of state space models, e.g., Mamba, for efficiently

capturing long-term dependencies in language modeling, we pro-

pose DyG-Mamba, a new continuous state space model (SSM) for

dynamic graph learning. Specifically, we first found that using in-

puts as control signals for SSM is not suitable for continuous-time

dynamic network data with irregular sampling intervals, resulting

in models being insensitive to time information and lacking gen-

eralization properties. Drawing inspiration from the Ebbinghaus

forgetting curve, which suggests that memory of past events is

strongly correlated with time intervals rather than specific details

of the events themselves, we directly utilize irregular time spans

as control signals for SSM to achieve significant robustness and

generalization. Through exhaustive experiments on 12 datasets

for dynamic link prediction and dynamic node classification tasks,

we found that DyG-Mamba achieves state-of-the-art performance

on most of the datasets, while also demonstrating significantly

improved computation and memory efficiency.
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1 Introduction
Dynamic graph learning aims to understand the node and link evo-

lution laws behind many complex systems, e.g., recommender sys-

tems [52, 54], traffic systems [2, 14], and social networks [1, 26, 43].

Despite the great success of current methods, there is still a core

limitation: existing methods lack the ability to efficiently and ef-
fectively track long-term temporal dependencies. Specifically, RNN-
based methods, e.g., JODIE [26] and TGN [39], recurrently update

the representation of current nodes by incorporating historical in-

formation. Although they efficiently capture long-term temporal

dependencies, they suffer from vanishing/exploding gradients, lead-

ing to unsatisfactory performance. In contrast, Transformer-based

models, e.g., SimpleDyG [50] and DyGFormer [53], can effectively

capture long-term dependencies but struggle with expensive com-

putation costs, i.e., the complexity of the self-attention mechanism

grows quadratically as the size of input increases. Although many

efforts have been dedicated to enhancing the efficiency of self-

attention, e.g., patching [21] or convolution [53], these methods

inevitably make trade-offs between effectiveness and efficiency,

thereby limiting their capability to establish long-term dependen-

cies. Other methods using multi-layer perceptrons (MLPs) or graph

neural networks (GNNs), e.g., GraphMixer [6], FreeDyG [45], and

TGAT [49], focus on short-term dependencies, and their perfor-

mance often decreases as the sequence length increases [6].

State space models (SSMs) seem to be a suitable framework to

solve this problem, as they have shown great potential for long-

term sequential modeling with linear time complexity [13, 15]. In

particular, compared to previous SSMs like Hippo [11] and S4 [12],

Mamba [10] sets parameters as input data-dependent variables to se-

lectively copy previous hidden states, achieving better performance

than Transformers in various tasks [37, 44, 55]. However, when

vanilla Mamba is applied for dynamic graph learning, Figure 1(a)

shows that Mamba significantly underperforms the Transformer-

based DyGFormer. We explore three main reasons that hindered

the application of Mamba to dynamic graphs. Firstly, Mamba lacks
sufficient utilization of time information with irregular time intervals.
The occurrence of events in dynamic graphs often follows differ-

ent periodic patterns, resulting in irregular interaction timestamps.

Effectively uncovering the underlying regularities in irregular tem-

poral data can enhance dynamic graph learning capabilities [22].

However, as shown in Figure 1(b-d), when the time information is

removed, only the Transformer-based DyGFormer shows a perfor-

mance drop in most cases. It indicates that most previous studies

including Mamba lack the ability to leverage irregular temporal
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Figure 1: Experimental results for models with and w/o time information, and also for DyGFormer with positional encoding.
𝑝 = ∗ indicates the p-value in the Student’s t-test [34]. vMamba represents the vanilla Mamba.

information [22]. To further explore what DyGFormer learns from

irregular time intervals, we simply replace time encoding with po-

sitional encoding [47], i.e., replaces irregular time-spans as regular.

We found that DyGFormer shows a slight performance drop. This

indicates that it uses limited irregular time information to indicate

sequence order. Secondly, Mamba’s data-dependent selection leads to
poor generalization for unseen nodes in inductive settings. As shown
in Figure 1(c-d), compared to DyGFormer, we observed that Mamba

exhibits a more obvious performance degradation in inductive set-

tings than in transductive settings. Because Mamba set core parame-

ters related to input data for selective copy, which limits its ability to

effectively predict interactions between nodes that are unseen dur-

ing the training process. Thirdly,Mamba cannot support interactions
between two input sequences. For dynamic graph learning, many

tasks require considering the semantic relatedness between two

temporal neighborhoods (i.e., history behaviors), which may also

be a causal factor for the target interaction [48]. For example, in a

temporal friendship network, if A and B are both friends with C, this

can prompt a potential new friendship between A and B. Therefore,

modeling mutual influences between two temporal neighborhoods

can help in creating informative dynamic representations.

To address these issues, we propose DyG-Mamba, a new architec-

ture for dynamic graph learning. Firstly, drawing inspiration from

the Ebbinghaus Forgetting Curve theory [7], which suggests that

“human beings adhere to the same forgetting pattern for most things,
which is strongly correlated with time rather than the content”, we
directly change the data-dependent parameter to a learnable time-

spans-dependent parameter that automatically learns the periodic-

ity of historical events with irregular time intervals and balances the

aggregation between historical state and current input. Secondly,

we theoretically and empirically demonstrate that among Mamba’s

three data-dependent input parameters, the step size parameter Δ is

the primary cause of its poor generalization. This parameter needs

to be replaced with one that is time-span dependent. The other

two parameters, 𝑩 and 𝑪 , are crucial for assessing the significance

of historical states and should remain data-dependent. Finally, to

enhance dynamic link prediction without adding extra computa-

tional overhead, we designed a linear cross-attention layer on top

of the DyG-Mamba layer. This addition improves the model’s per-

formance by better supporting the interaction of nodes in historical

event sequences. The contributions are summarized as follows:

• To the best of our knowledge, we are the first to introduce SSMs

for dynamic graph learning, achieving high efficiency and effec-

tiveness in handling long-term temporal dependencies.

• We theoretically and empirically analyze the role of three core pa-

rameters of Mamba and replace one data-dependent parameter Δ
with a learnable time-span-dependent parameter to better utilize

irregular time information and enhances model generalization.

• We design a linear cross-attention architecture for DyG-Mamba

to facilitate interaction between two historical event sequences,

improving effectiveness without sacrificing efficiency.

• Extensive experimental results on 12 open datasets, including

dynamic link prediction and node classification tasks, show that

DyG-Mamba achieves SOTA performance with superior general-

ization and robustness. DyG-Mamba achieves higher precision

with linear time and memory complexity than DyGFormer.

2 Related Work
Representation learning on dynamic graphs has recently attracted

great attention [8, 19, 29, 30]. Discrete-time methods manually di-

vide the dynamic graph into a sequence of snapshots with different

resolutions (one day/an hour) and then combine GNNs (snapshot

encoder) with recurrent models (dynamic tracker) to learn the rep-

resentation of nodes [5, 36, 40, 41, 48, 51]. Their main common

drawback is the necessity to predetermine the time granularity

to create snapshots, ignoring the fine-grained temporal order of

nodes/edges within each snapshot [49, 53]. In contrast, continuous-
time methods directly use timestamps for representation learning.

Based on the neural architectures, they can be classified into four

classes, including RNN-based methods, e.g., JODIE and TGN, GNN-
based methods, e.g., TGAT and DySAT [40],MLP-based methods, e.g.,
GraphMixer and FreeDyG [45], and Transformer-based methods,
e.g., SimpleDyG [50] and DyGFormer. Additional techniques, such

as ordinary differential equations [31, 32], random walks [22, 49],

and temporal point process [18, 20], are also incorporated to learn

continuous temporal information. Table 1 provides a detailed com-

parison between our method and the SOTAs including JODIE [26],

DyRep [46], TGN [39], TGAT [49], CAWN [49], EdgeBank [38],

TCL [48], GraphMixer [6], and DyGFormer [53], from the follow-

ing angles: if the method could effectively handle unseen nodes

during training (i.e., inductive), capture long-term dependencies

with both time and memory efficiency, exhibit robustness against

noise, and effectively leverage irregular time-span information.

Originating from control systems [23, 27], SSMs inspire great

attention for long-sequence modeling with HiPPO initialization [11,

13]. To enhance computational efficiency, the structured state space

models (S4) normalize the parameters into diagonal structure [12].

Since then, many flavors of S4 sprang up, e.g., parallel scan (S5) [42],
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Table 1: Comparison of Dynamic Graph Baselines. With a batch size of 200 and a sequence length of 512, a model is considered
time and memory efficient if the running time and memory usage are less than GraphMixer, i.e., running time 250 seconds and
memory usage 30,000 MB. Adding 50% noisy temporal edges, a performance drop of less than 10% indicates robustness.

JODIE DyRep TGN TGAT CAWN EdgeBank TCL GraphMixer DyGFormer DyG-Mamba

Inductive ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

Long-Term Dependency Capability ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓

Time Efficient ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✓

Memory Efficient ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✓

Noise Robust ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✓

Irregular Time-Span Supportive ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

shift SSM for linear attention (H3) [9] and diagonal structure design

for parameters [16]. To remove the linear time-invariance constraint

for better generalization, Mamba introduces a data-dependent se-

lection mechanism into S4 to capture long-range context with in-

creasing sequence length and a hardware-aware algorithm for ef-

ficient implementation [10], outperforming Transformers on var-

ious benchmarks [37, 44, 55]. Then, Graph Mamba [3] present a

framework for a new class of GNNs based on selective SSMs. STG-

Mamba [28] proposes Kalman Filtering GNNs for the adaptive en-

hancement of the graph structure of snapshots and adopts Mamba

layers to capture the dynamic evolution of spatial-temporal graphs.

3 Preliminary
Dynamic Graph Learning. Dynamic graphs can be modeled

as a sequence of non-decreasing chronological interactions G =

{(𝑢1, 𝑣1, 𝑡1) , . . . , (𝑢𝜏 , 𝑣𝜏 , 𝜏)}with 0 ≤ 𝑡1 ≤ · · · ≤ 𝜏 , where𝑢𝑖 , 𝑣𝑖 ∈ V
denote the source and destination nodes of the 𝑖-th link and V de-

note all nodes. Each node is associated with a node feature 𝒙 ∈ R𝑑𝑉

and each interaction has a link feature 𝒆𝑡 ∈ R𝑑𝐸 , where 𝑑𝑉 and 𝑑𝐸
denote the dimensions of the node and the link features. Given the

source node 𝑢, destination node 𝑣 , timestamp 𝑡 , and historical in-

teractions before 𝑡 , i.e., {(𝑢′, 𝑣 ′, 𝑡 ′) |𝑡 ′ < 𝑡}, dynamic graph learning
aims to learn time-aware representations 𝒉𝑡𝑢 and 𝒉𝑡𝑣 for nodes 𝑢
and 𝑣 . We validate the learned representations via two common

tasks: (i) dynamic link prediction, which predicts whether 𝑢 and 𝑣

are connected at 𝑡 ; and (ii) dynamic node classification, which infers

the class of 𝑢 and 𝑣 at 𝑡 .

State Space Models. SSMs [10, 33, 37] define a linear mapping

from input 𝒖 (𝑡) ∈ R𝑑 to output 𝒚(𝑡) ∈ R𝑑 through a state-variable

𝒉(𝑡) ∈ R𝑚×𝑑
, formulated by:

𝒉′ (𝑡) = 𝑨𝒉(𝑡) + 𝑩𝒖 (𝑡), 𝒚(𝑡) = 𝑪𝒉(𝑡) + 𝐷𝒖 (𝑡), (1)

where 𝑨 ∈ R𝑚×𝑚
, 𝑩, 𝑪 ∈ R𝑚 are the weighting trainable parame-

ters, and 𝐷 always equals to 0. For application to a discrete input

sequence (𝒖1, 𝒖2, . . . , 𝒖𝜏 ) instead of a continuous function, Eq.(1)

can be discredited with a step size Δ, indicating the input’s reso-

lution. Following [10], we consider to discretize SSMs using the

zero-order hold (ZOH) discretization rule, which is formulated by:

𝒉𝑡 = 𝑨𝒉𝑡−1 + 𝑩𝒖𝑡 , 𝒚𝑡 = 𝑪𝒉𝑡 ,

where 𝑨 = exp(ΔA), 𝑩 = (Δ𝑨)−1 (exp(Δ𝑨) − 𝑰 ) (Δ𝑩) .
(2)

By transforming the parameters from (Δ, 𝑨, 𝑩) to (𝑨,𝑩), the SSM
model becomes a sequence-to-sequence mapping framework from

discrete input {𝒖1, 𝒖2, . . . , 𝒖𝜏 } to output {𝒚1,𝒚2, . . . ,𝒚𝜏 }.

4 Methodology
The overview of DyG-Mamba is shown in Figure 2(a), with two

DyG-Mamba frameworks for dynamic link prediction in Figure 2(b)

and node classification in Figure 2(c). To help readers better under-

stand, we take the dynamic link prediction task as an instantiation.

Specifically, to predict the interaction between nodes 𝑢 and 𝑣 at

timestamp 𝜏 , we first extract first-hop interaction sequences of

nodes𝑢 and 𝑣 before 𝜏 . Next, in addition to computing the encoding

of nodes, links, time, and co-neighbor frequencies, we also compute

the encoding of normalized time-spans between any two continu-

ous timestamps as control signals for the continuous SSM. Finally,

the outputs are averaged to derive representations of 𝑢 and 𝑣 at

timestamp 𝜏 (i.e., 𝒉𝜏𝑢 and 𝒉𝜏𝑣 ) for the dynamic link prediction.

4.1 Continuous-Time Dynamic Graph Encoding
Node, Edge, and Time Encodings. Most previous methods re-

quire nodes’ historical interactions from multiple hops for dynamic

graph learning [39, 46]. Unlike them, we learn only from the nodes’

historical first-hop interactions, turning dynamic graph learning

into simpler sequence learning problems. Specifically, the first-hop

interaction sequence of length 𝑛𝑢 for node𝑢 before time 𝜏 is defined

as 𝑆𝜏𝑢 = {(𝑢, 𝑘1, 𝑡1), . . . , (𝑢, 𝑘𝑛𝑢 , 𝑡𝑛𝑢 ) |𝑡𝑛𝑢 < 𝜏}. Then, the encoding
of 𝑆𝜏𝑢 includes node encodings 𝑿𝜏

𝑢,𝑉
={𝒗𝑘1 , . . . , 𝒗𝑘𝑛𝑢 } ∈ R𝑛𝑢×𝑑𝑉 ,

edge encodings 𝑿𝜏
𝑢,𝐸

= {𝒆𝑘1 . . . , 𝒆𝑘𝑛𝑢 } ∈ R𝑛𝑢×𝑑𝐸 , and time encod-

ings 𝑿𝜏
𝑢,𝑇

={𝒕1, . . . , 𝒕𝒏𝒖 } ∈ R𝑛𝑢×𝑑𝑇 , where 𝑑∗ (∗ ∈ {𝐸,𝑉 ,𝑇 }) are
the dimensions of the encodings. If the graph is non-attributed, we

simply set the node feature and link feature to zero vectors. For time

encodings, we use angular frequency features 𝝎 = {𝛼−(𝑖−1)/𝛽 }𝑑𝑇
𝑖=1

to encode the relative time intervals Δ𝑡 𝑗 = 𝜏 − 𝑡 𝑗 by the encoding

function cos(𝝎Δ𝑡 𝑗 ) into a 𝑑𝑇 -dimensional vector. 𝛼 and 𝛽 are pa-

rameters that make Δ𝑡max × 𝛼−(𝑖−1)/𝛽 → 0 when 𝑖 → 𝑑𝑇 , and the

cosine function helps project𝝎Δ𝑡 into [−1, +1].𝝎 remains constant

during training to facilitate easier model optimization.

Co-occurrence Frequency Encodings. To consider the potential

semantic relatedness between nodes’ historical interactions, we

employ co-occurrence frequency encodings, following [53]. For-

mally, let the historical interactions of 𝑢 and 𝑣 be {𝑎, 𝑏, 𝑣} and

{𝑏,𝑏, 𝑐, 𝑎}. The frequency of 𝑎, 𝑏, 𝑐 , and 𝑣 in two sequences is

[1, 1], [1, 2], [0, 1], and [1, 0], respectively. The co-occurrence fea-
tures of 𝑢 and 𝑣 could be denoted by 𝑪𝜏𝑢 = [[1, 1] , [1, 2] , [1, 0]]⊤
and 𝑪𝜏𝑣 = [[1, 2] , [1, 2] , [0, 1] , [1, 1]]⊤. Then, we apply a function

𝑓 (·) : R1 → R𝑑𝐶 to encode the co-occurrence features by:

𝑿𝜏∗,𝐶 = (𝑓
(
𝑪𝜏∗ [:, 0]

)
+ 𝑓

(
𝑪𝜏∗ [:, 1]

)
)𝑾𝐶 + 𝒃𝐶 , (3)
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Figure 2: Overview of the DyG-Mamba (a) and its frameworks for downstream tasks (b, c).

where 𝑿𝜏∗,𝐶 ∈ R𝑛∗×𝑑𝐶 , ∗ ∈ {𝑢, 𝑣} 𝑑𝐶 is the dimension of the co-

occurrence encoding, and𝑾𝐶 and 𝒃𝐶 are trainable parameters. We

implement 𝑓 (·) by two-layer perception with ReLU activation [35].

Encoding Alignment.We align the encodings to the same dimen-

sion 𝑑 with trainable weight 𝑾∗ ∈ R𝑑∗×𝑑 and 𝑏∗ ∈ R𝑑 to obtain

𝒁𝜏𝑢,∗ ∈ R𝑛×𝑑 , formulated by:

𝒁𝜏𝑢,∗ = 𝑿𝜏𝑢,∗𝑾∗ + 𝒃∗, where ∗ ∈ {𝑁, 𝐸,𝑇 ,𝐶}. (4)

Finally, we concatenate 𝒁𝜏𝑢 = 𝒁𝜏
𝑢,𝑉

∥𝒁𝜏
𝑢,𝐸

∥𝒁𝜏
𝑢,𝑇

∥𝒁𝜏
𝑢,𝐶

as the aligned

embedding for 𝑢 with 𝒁𝜏𝑢 ∈ R𝑛𝑢×4𝑑 .

4.2 SSMs for Dynamic Graph Modeling
In Eq.(2), DyG-Mamba has three core parameters: 𝚫, 𝑩, and 𝑪 . 𝚫
determines how much historical memory is forgotten, and 𝑩 and

𝑪 measure the similarity between previous inputs and the target

output. In this section, we theoretically analysis their roles. We first

introduce the definition of the parameter 𝚫 in Theorem 1.

Theorem 1. For a general formulation of the linear time-invariant
ODE of the form 𝑑

𝑑𝑡
𝒉(𝑡) = 𝑨𝒉(𝑡) + 𝑩𝒖 (𝑡) for some input function

𝒖 (𝑡), the general method for discretizing the ODE with each step
size Δ, can be calculated in closed-form between t and t+Δ as 𝒉(𝑡 +
Δ) = 𝑒Δ𝑨𝒉(𝑡) +

(∫ Δ
𝑠=0

𝑒𝑠𝑨 d𝑠

)
𝑩𝒖 (𝑡) if the control input 𝒖 (𝑡) remains

constant between t and t+Δ. If 𝑨 is invertible, 𝒉(𝑡 + Δ) = 𝑒Δ𝑨𝒉(𝑡) +
(Δ𝑨)−1 (𝑒Δ𝑨 − 𝐼 ) (Δ𝑩)𝒖 (𝑡).

Mamba [10] focuses on language sequences, which assumes that

successive word pairs have the same interval, e.g., Δ = 1 in The-

orem 1. To selectively copy some previous inputs, Mamba takes

the current input 𝒖 (𝑡) as control signals to replace the previous

fixed Δ with Δ = SiLU(Linear(𝒖 (𝑡))), where SiLU is an activation

function. However, when applied to dynamic graphs, Mamba can-

not effectively use irregular time information (Figure 1), and its

data-dependent strategy leads to poor performance in inductive

scenarios (w/o Time-Span vs. DyG-Mamba in Figure 3). The Ebbing-

haus Forgetting Curve theory [7] suggests that historical memory

is strongly correlated with time-spans between events rather than

events themselves. Considering dynamic graphs naturally have

irregular time intervals, we can use time-spans between any two

timestamps 𝑡𝑖−1 and 𝑡𝑖 as control signals, formulated by:

Δ𝑖 = SiLU (Linear (cos (𝝎 (𝑡𝑖+1 − 𝑡𝑖 ) / (𝜏 − 𝑡1) ) ) ) , (5)

where Linear represents linear layers andwe set the first normalized

time span as Δ𝑡1 = 1/(𝜏 − 𝑡1). We then take 𝒁𝜏𝑢 as input for DyG-

Mamba and the time-span sequence {Δ𝑖 }𝑛𝑖=1 as control signals for
continuous SSMs. 𝒁𝜏𝑢 first passes through a linear layer followed by

a 1D convolution layer and SiLU activation function, formulated by

𝑴𝜏
𝑢 = SiLU (Conv1D (Linear (𝒁𝜏𝑢 ) ) ) . (6)

Then, we initialize 𝑨 as a dialogue matrix based on [15] and

set {Δ𝑖 }𝑛𝑖=1 according to Eq.(5). We define 𝑩 = Linear𝐵 (𝑴𝜏
𝑢 ) and

𝑪 = Linear𝐶 (𝑴𝜏
𝑢 ). 𝑴𝜏

𝑢 can pass through the continuous SSM layer

to learn new representations, which could be formulated by:

̂𝒁𝜏𝑢 = SSM(𝑴𝜏
𝑢 ,𝑩, 𝑪, {Δ}𝑛𝑖=1), (7)

where the 𝑘-th generated output of ̂𝒁𝜏𝑢 could be formulated by:

𝒉𝑘 = 𝑨𝑘𝒉𝑘−1 + 𝑩𝑘𝒖𝑘 , �̂�𝜏
𝑘
= 𝑪𝑘𝒉𝑘 , (8)

where 𝑨𝑘 = exp(Δ𝑘𝑨), 𝑩𝑘 = (Δ𝑘𝑨)−1 (exp(Δ𝑘𝑨) − 𝑰 ) (Δ𝑘𝑩) and
𝑪𝑘 = 𝑪𝑘 . To theoretically demonstrate that time-span encoding

can control the importance between historical memory and current

input, we first give the following Theorem 2.

Theorem 2. Let 𝑨 be diagonalizable as 𝑨 = 𝑽𝚲𝑽−1 with eigen-
values {𝜆1, . . . , 𝜆𝑁 }. Given Δ𝑘 , 𝑨𝑘=diag(𝑒𝜆1Δ𝑘 , . . . , 𝑒𝜆𝑁 Δ𝑘 ) and 𝑩𝑘
=
(
𝜆−1
1

(𝑒𝜆1Δ𝑘 − 1), . . . , 𝜆−1
𝑁

(𝑒𝜆𝑁 Δ𝑘 − 1)
)
, the 𝑖-th coordinate of 𝒉𝑘

in Eq.(8) can be denoted as ℎ𝑖,𝑘 = 𝑒𝜆𝑖Δ𝑘ℎ𝑖,𝑘−1 + 𝜆−1𝑖 (𝑒𝜆𝑖Δ𝑘 − 1)𝑢𝑖,𝑘 .

Following [15], the real part of the elements of 𝜆𝑖 is restricted

to be negative. According to Theorem 2, if Δ𝑘 is small enough, we

obtain |𝜆𝑖 |Δ𝑘 ≈ 0, i.e., ℎ𝑖,𝑘 ≈ ℎ𝑖,𝑘−1, demonstrating that a small

time-span Δ𝑘 persists the historical state and ignores the current

input. And a larger Δ𝑘 makes 𝜆𝑖Δ𝑘 ≪ 0 and ℎ𝑖,𝑘 ≈ −𝜆−1
𝑖
𝑢𝑘 , i.e.,

the information from the previous timesteps would be forgotten,

similar to a “forget” gate in LSTM [17].
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We then show how the parameters 𝑩 and 𝑪 selectively copy

previous inputs according to Theorem 3.

Theorem 3. Parameters 𝑩 and 𝑪 can help selectively copy the
previous input through the causal attention mechanism. Considering
𝒖𝑘 as k-th column of𝑴𝜏

𝑢 , Eq.(8) can be further decomposed as follows:

�̂�𝜏
𝑘
= 𝑪𝑘

𝑘−2∏
𝑖=0

𝑨𝑘−𝑖𝑩1𝒖1 + · · · + 𝑪𝑘

𝑘− 𝑗∏
𝑖=0

𝑨𝑘−𝑖𝑩 𝑗−1𝒖 𝑗−1 + · · · + 𝑪𝑘𝑩𝑘𝒖𝑘 ,

= 𝑒
(∑𝑘−2

𝑖=0
Δ𝑘−𝑖𝑨)𝑪𝑘𝑩1𝒖1 + · · · + 𝑒 (

∑𝑘− 𝑗−1
𝑖=0

Δ𝑘−𝑖𝑨)𝑪𝑘𝑩 𝑗𝒖 𝑗 + · · · + 𝑪𝑘𝑩𝑘𝒖𝑘 ,

where 𝑪𝑘 can be considered as the query of 𝑘-th input 𝒖𝑘 and 𝑩 𝑗 can
be considered as key of 𝒖 𝑗 . Thus, 𝑪𝑘𝑩 𝑗 can measure the similarity.

Finally, after SSM layer, the output can be formulated by:

𝒁𝜏𝑢,𝑜𝑢𝑡 = (̂𝒁𝜏𝑢 ⊙ SiLU(Linear(𝒁𝜏𝑢 )))𝑾𝑜𝑢𝑡 + 𝒃𝑜𝑢𝑡 , (9)

where ⊙ is element-wise dot product, and𝑾𝑜𝑢𝑡 and 𝒃𝑜𝑢𝑡 are train-
able parameters.

4.3 DyG-Mamba for Downstream Tasks
Temporal Link Prediction. In Figure 2(b), we employ a two-

stream DyG-Mamba encoder to individually deal with each se-

quence. Inspired by linear attention [24], which reduces time and

memory complexity, we then interact the two streams at the se-

mantic level through a linear cross-attention layer, formulated by:

Linear Attention(𝑸,𝑲 , 𝑽 ) =
𝜙 (𝑄𝑖 )⊤

∑𝑖
𝑗=1 𝜙 (𝐾𝑗 )𝑉⊤

𝑗

𝜙 (𝑄𝑖 )⊤
∑𝑖
𝑗=1 𝜙 (𝐾𝑗 )

, (10)

𝑸𝜏∗ ,𝑲
𝜏
∗ , 𝑽

𝜏
∗ = 𝒁𝜏∗,𝑜𝑢𝑡𝑾𝑄 , 𝒁

𝜏
∗,𝑜𝑢𝑡𝑾𝐾 , 𝒁

𝜏
∗,𝑜𝑢𝑡𝑾𝑉 , ∗ ∈ {𝑢, 𝑣}, (11)

𝑶𝜏∗ = Linear Attention(𝑸𝜏∗ ,𝑲𝜏∗ , 𝑽𝜏∗ ), ∗ ∈ {𝑢, 𝑣}, (12)

𝑯𝜏∗ = LayerNorm (Linear (𝑶𝜏∗ + 𝑸𝜏∗ ) ) , ∗ ∈ {𝑢, 𝑣}, (13)

where 𝜙 (𝑥) = elu(𝑥) +1 and elu(·) is an activation function [4]. The

co-attention operation in Eq.(12) allows the encoder to emphasize

relevant shared semantics and suppress irrelevant ones. We use

readout function R𝐿×4𝑑 → R1×4𝑑
, i.e., MEAN pooling, to obtain

node embeddings 𝒉𝜏∗ = MEAN(𝑯𝜏∗ ) with ∗ ∈ {𝑢, 𝑣}. Finally, we use
an MLP to concatenate representations of two nodes as inputs and

return the predicted probability 𝑦 as output, formulated by:

𝑦 = Softmax(Linear(RELU(Linear(𝒉𝜏𝑢 ∥𝒉𝜏𝑣))) . (14)

We adopt binary cross-entropy loss for dynamic link prediction.

Temporal Node Classification. After obtaining sequential node
representations 𝑯𝜏𝑢,𝑜𝑢𝑡 ∈ R𝐿×3𝑑 without co-neighbor encoding,

node embeddings are calculated by 𝒉𝜏𝑢 = MEAN(𝑯𝑢,𝑜𝑢𝑡 ), and we

use the cross-entropy loss function for node classification.

Computational Efficiency. Assuming the batch size is 𝑏, the fea-

ture dimension is 𝑑 , and the sequence length is 𝐿, the memory and

time complexities of DyG-Mamba are𝑂 (𝑏𝐿𝑑). DyGFormer exhibits

quadratic memory and time complexities as 𝑂 (𝑏𝐿2𝑑), showing the

efficiency of DyG-Mamba.

5 Experiments
Datasets and Baselines. We evaluate model’s performance on

12 datasets, ranging from social networks to transportation net-

works [38]. We split each dataset with the ratio of 70%/15%/15%

for training/validation/testing. We select nine best-performing dy-

namic graph learning baselines, including RNN-based methods:

JODIE, DyRep, TGN and CAWN, a GNN-based method: TGAT, a

memory-based method: EdgeBank, a MLP-based method: Graph-

Mixer, and Transformer-based methods: TCL and DyGFormer.

Evaluation Details and Metrics. For dynamic link prediction, fol-
lowing [38, 45, 53], we evaluate baselines with two settings: the

transductive setting aims to predict future links between nodes ob-

served during training, and the inductive setting predicts future

links between unseen nodes. We use AP and AUC-ROC as the eval-

uation metrics. [38] found that random negative sampling may not

provide a complete evaluation. Thus, following their studies, we

adopt random (rnd), historical (hist), and inductive (ind) negative
sampling for evaluation. For dynamic node classification, we esti-
mate the state of a node in a given interaction at a specific time and

use AUC-ROC as the evaluation metric.

ImplementationDetails. For a fair comparison, we useDyGLib [53]

that reproduce all baselines via the same training/inference pipeline.

We use the Adam optimizer [25] with a learning rate of 0.0001.We

train the models for 100 epochs and use the early stopping strategy

with a patience of 20. We select the model that achieves the best

performance in the validation set for testing. We run methods five

times and report the average performance to eliminate deviations.

Table 2: Performance on dynamic node classification.

Methods Wikipedia Reddit Avg. Rank

JODIE 88.99±1.05 60.37±2.58 5.00

DyRep 86.39±0.98 63.72±1.32 6.00

TGAT 84.09±1.27 70.04±1.09 5.00

TGN 86.38±2.34 63.27±0.90 7.00

CAWN 84.88±1.33 66.34±1.78 6.00

EdgeBank N/A N/A N/A

TCL 77.83±2.13 68.87±2.15 6.00

GraphMixer 86.80±0.79 64.22±3.32 5.00

DyGFormer 87.44±1.08 68.00±1.74 3.50

DyG-Mamba 88.58±0.92 70.79±1.97 1.50

5.1 Quantitative Evaluation
Performance on Dynamic Node Classification. Table 2 shows
the AUC-ROC results on dynamic node classification. DyG-Mamba

achieves SOTA performance on the Reddit dataset and second-best

performance on the Wikipedia dataset. In addition, DyG-Mamba

achieves the best average rank of 1.5 compared to the second-best

DyGFormer with 3.5 AUC-ROC results for all baselines in Table 2.

Performance on Dynamic Link Prediction. To demonstrate

the effectiveness and generalizability of DyG-Mamba, we perform

evaluations in two different experimental settings: transductive

and inductive settings. Table 3 reports the results in the inductive

setting with rnd negative sampling. From these tables, we observe

that DyG-Mamba achieves the best performance on 11 datasets and

achieves a best average rank of 1.91/1.69 on AP/AUC across three

negative sampling strategies, while the best-performing baseline

DyGFormer achieves only 3.47/3.28. Table 4 shows the results in the

transductive setting. Among ten models, DyG-Mamba achieves the

best/second-best performance on 11, eight, and ten datasets in three
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Table 3: AP for inductive dynamic link prediction with random negative sampling strategies. The best and second-best results
are emphasized by bold and underlined fonts. Please note that N/A means Not Applicable.

Datasets JODIE DyRep TGAT TGN CAWN EdgeBank TCL GraphMixer DyGFormer DyG-Mamba

Wikipedia 94.82±0.20 92.43±0.37 96.22±0.07 97.83±0.04 98.24±0.03 N/A 96.22±0.17 96.65±0.02 98.59±0.03 98.65±0.03
Reddit 96.50±0.13 96.09±0.11 97.09±0.04 97.50±0.07 98.62±0.01 N/A 94.09±0.07 95.26±0.02 98.84±0.02 98.88±0.00
MOOC 79.63±1.92 81.07±0.44 85.50±0.19 89.04±1.17 81.42±0.24 N/A 80.60±0.22 81.41±0.21 86.96±0.43 90.20±0.06
LastFM 81.61±3.82 83.02±1.48 78.63±0.31 81.45±4.29 89.42±0.07 N/A 73.53±1.66 82.11±0.42 94.23±0.09 95.13±0.08
Enron 80.72±1.39 74.55±3.95 67.05±1.51 77.94±1.02 86.35±0.51 N/A 76.14±0.79 75.88±0.48 89.76±0.34 91.14±0.07
Social Evo. 91.96±0.48 90.04±0.47 91.41±0.16 90.77±0.86 79.94±0.18 N/A 91.55±0.09 91.86±0.06 93.14±0.04 93.23±0.01
UCI 79.86±1.48 57.48±1.87 79.54±0.48 88.12±2.05 92.73±0.06 N/A 87.36±2.03 91.19±0.42 94.54±0.12 94.15±0.04
Can. Parl. 53.92±0.94 54.02±0.76 55.18±0.79 54.10±0.93 55.80±0.69 N/A 54.30±0.66 55.91±0.82 87.74±0.71 90.05±0.86
US Legis. 54.93±2.29 57.28±0.71 51.00±3.11 58.63±0.37 53.17±1.20 N/A 52.59±0.97 50.71±0.76 54.28±2.87 59.52±0.54
UN Trade 59.65±0.77 57.02±0.69 61.03±0.18 58.31±3.15 65.24±0.21 N/A 62.21±0.12 62.17±0.31 64.55±0.62 65.87±0.40
UN Vote 56.64±0.96 54.62±2.22 52.24±1.46 58.85±2.51 49.94±0.45 N/A 51.60±0.97 50.68±0.44 55.93±0.39 59.89±1.04
Contact 94.34±1.45 92.18±0.41 95.87±0.11 93.82±0.99 89.55±0.30 N/A 91.11±0.12 90.59±0.05 98.03±0.02 98.12±0.04
Avg. Rank 5.83 6.91 6.20 4.83 4.91 N/A 6.70 6.00 2.50 1.08

Table 4: AP for transductive dynamic link prediction with random, historical, and inductive negative sampling strategies.

NSS Datasets JODIE DyRep TGAT TGN CAWN EdgeBank TCL GraphMixer DyGFormer DyG-Mamba

rnd

Wikipedia 96.50 ± 0.14 94.86 ± 0.06 96.94 ± 0.06 98.45 ± 0.06 98.76 ± 0.03 90.37 ± 0.00 96.47 ± 0.16 97.25 ± 0.03 99.03 ± 0.02 99.08 ± 0.09
Reddit 98.31 ± 0.14 98.22 ± 0.04 98.52 ± 0.02 98.63 ± 0.06 99.11 ± 0.01 94.86 ± 0.00 97.53 ± 0.02 97.31 ± 0.01 99.22 ± 0.01 99.27 ± 0.00
MOOC 80.23 ± 2.44 81.97 ± 0.49 85.84 ± 0.15 89.15 ± 1.60 80.15 ± 0.25 57.97 ± 0.00 82.38 ± 0.24 82.78 ± 0.15 87.52 ± 0.49 90.25 ± 0.09
LastFM 70.85 ± 2.13 71.92 ± 2.21 73.42 ± 0.21 77.07 ± 3.97 86.99 ± 0.06 79.29 ± 0.00 67.27 ± 2.16 75.61 ± 0.24 93.00 ± 0.12 94.23 ± 0.01
Enron 84.77 ± 0.30 82.38 ± 3.36 71.12 ± 0.97 86.53 ± 1.11 89.56 ± 0.09 83.53 ± 0.00 79.70 ± 0.71 82.25 ± 0.16 92.47 ± 0.12 93.14 ± 0.08
Social Evo. 89.89 ± 0.55 88.87 ± 0.30 93.16 ± 0.17 93.57 ± 0.17 84.96 ± 0.09 74.95 ± 0.00 93.13 ± 0.16 93.37 ± 0.07 94.73 ± 0.01 94.77 ± 0.01
UCI 89.43 ± 1.09 65.14 ± 2.30 79.63 ± 0.70 92.34 ± 1.04 95.18 ± 0.06 76.20 ± 0.00 89.57 ± 1.63 93.25 ± 0.57 95.79 ± 0.17 96.14 ± 0.14
Can. Parl. 69.26 ± 0.31 66.54 ± 2.76 70.73 ± 0.72 70.88 ± 2.34 69.82 ± 2.34 64.55 ± 0.00 68.67 ± 2.67 77.04 ± 0.46 97.36 ± 0.45 98.20 ± 0.52
US Legis. 75.05 ± 1.52 75.34 ± 0.39 68.52 ± 3.16 75.99 ± 0.58 70.58 ± 0.48 58.39 ± 0.00 69.59 ± 0.48 70.74 ± 1.02 71.11 ± 0.59 73.66 ± 1.13

UN Trade 64.94 ± 0.31 63.21 ± 0.93 61.47 ± 0.18 65.03 ± 1.37 65.39 ± 0.12 60.41 ± 0.00 62.21 ± 0.03 62.61 ± 0.27 66.46 ± 1.29 68.51 ± 0.17
UN Vote 63.91 ± 0.81 62.81 ± 0.80 52.21 ± 0.98 65.72 ± 2.17 52.84 ± 0.10 58.49 ± 0.00 51.90 ± 0.30 52.11 ± 0.16 55.55 ± 0.42 64.74 ± 1.48

Contact 95.31 ± 1.33 95.98 ± 0.15 96.28 ± 0.09 96.89 ± 0.56 90.26 ± 0.28 92.58 ± 0.00 92.44 ± 0.12 91.92 ± 0.03 98.29 ± 0.01 98.38 ± 0.01

Avg. Rank 6.08 6.83 6.67 3.33 5.50 8.42 7.92 6.25 2.67 1.33

hist

Wikipedia 83.01 ± 0.66 79.93 ± 0.56 87.38 ± 0.22 86.86 ± 0.33 71.21 ± 1.67 73.35 ± 0.00 89.05 ± 0.39 90.90 ± 0.10 82.23 ± 2.54 82.35 ± 1.25

Reddit 80.03 ± 0.36 79.83 ± 0.31 79.55 ± 0.20 81.22 ± 0.61 80.82 ± 0.45 73.59 ± 0.00 77.14 ± 0.16 78.44 ± 0.18 81.57 ± 0.67 81.02 ± 0.19

MOOC 78.94 ± 1.25 75.60 ± 1.12 82.19 ± 0.62 87.06 ± 1.93 74.05 ± 0.95 60.71 ± 0.00 77.06 ± 0.41 77.77 ± 0.92 85.85 ± 0.66 87.42 ± 1.57
LastFM 74.35 ± 3.81 74.92 ± 2.46 71.59 ± 0.24 76.87 ± 4.64 69.86 ± 0.43 73.03 ± 0.00 59.30 ± 2.31 72.47 ± 0.49 81.57 ± 0.48 84.08 ± 0.45
Enron 69.85 ± 2.70 71.19 ± 2.76 64.07 ± 1.05 73.91 ± 1.76 64.73 ± 0.36 76.53 ± 0.00 70.66 ± 0.39 77.98 ± 0.92 75.63 ± 0.73 77.85 ± 1.20

Social Evo. 87.44 ± 6.78 93.29 ± 0.43 95.01 ± 0.44 94.45 ± 0.56 85.53 ± 0.38 80.57 ± 0.00 94.74 ± 0.31 94.93 ± 0.31 97.38 ± 0.14 97.35 ± 0.18

UCI 75.24 ± 5.80 55.10 ± 3.14 68.27 ± 1.37 80.43 ± 2.12 65.30 ± 0.43 65.50 ± 0.00 80.25 ± 2.74 84.11 ± 1.35 82.17 ± 0.82 81.36 ± 0.14

Can. Parl. 51.79 ± 0.63 63.31 ± 1.23 67.13 ± 0.84 68.42 ± 3.07 66.53 ± 2.77 63.84 ± 0.00 65.93 ± 3.00 74.34 ± 0.87 97.00 ± 0.31 97.39 ± 0.29
US Legis. 51.71 ± 5.76 86.88 ± 2.25 62.14 ± 6.60 74.00 ± 7.57 68.82 ± 8.23 63.22 ± 0.00 80.53 ± 3.95 81.65 ± 1.02 85.30 ± 3.88 88.86 ± 1.40
UN Trade 61.39 ± 1.83 59.19 ± 1.07 55.74 ± 0.91 58.44 ± 5.51 55.71 ± 0.38 81.32 ± 0.00 55.90 ± 1.17 57.05 ± 1.22 64.41 ± 1.40 65.11 ± 0.19

UN Vote 70.02 ± 0.81 69.30 ± 1.12 52.96 ± 2.14 69.37 ± 3.93 51.26 ± 0.04 84.89 ± 0.00 52.30 ± 2.35 51.20 ± 1.60 60.84 ± 1.58 61.17 ± 2.64

Contact 95.31 ± 2.13 96.39 ± 0.20 96.05 ± 0.52 93.05 ± 2.35 84.16 ± 0.49 88.81 ± 0.00 93.86 ± 0.21 93.36 ± 0.41 97.57 ± 0.06 97.76 ± 0.05

Avg. Rank 6.08 6.00 6.33 4.42 8.42 6.92 6.58 4.92 3.00 2.33

ind

Wikipedia 75.65 ± 0.79 70.21 ± 1.58 87.00 ± 0.16 85.62 ± 0.44 74.06 ± 2.62 80.63 ± 0.00 86.76 ± 0.72 88.59 ± 0.17 78.29 ± 5.38 87.06 ± 0.86

Reddit 86.98 ± 0.16 86.30 ± 0.26 89.59 ± 0.24 88.10 ± 0.24 91.67 ± 0.24 85.48 ± 0.00 87.45 ± 0.29 85.26 ± 0.11 91.11 ± 0.40 91.77 ± 0.46
MOOC 65.23 ± 2.19 61.66 ± 0.95 75.95 ± 0.64 77.50 ± 2.91 73.51 ± 0.94 49.43 ± 0.00 74.65 ± 0.54 74.27 ± 0.92 81.24 ± 0.69 81.19 ± 2.02

LastFM 62.67 ± 4.49 64.41 ± 2.70 71.13 ± 0.17 65.95 ± 5.98 67.48 ± 0.77 75.49 ± 0.00 58.21 ± 0.89 68.12 ± 0.33 73.97 ± 0.50 75.05 ± 0.40

Enron 68.96 ± 0.98 67.79 ± 1.53 63.94 ± 1.36 70.89 ± 2.72 75.15 ± 0.58 73.89 ± 0.00 71.29 ± 0.32 75.01 ± 0.79 77.41 ± 0.89 77.46 ± 0.90
Social Evo. 89.82 ± 4.11 93.28 ± 0.48 94.84 ± 0.44 95.13 ± 0.56 88.32 ± 0.27 83.69 ± 0.00 94.90 ± 0.36 94.72 ± 0.33 97.68 ± 0.10 97.78 ± 0.15
UCI 65.99 ± 1.40 54.79 ± 1.76 68.67 ± 0.84 70.94 ± 0.71 64.61 ± 0.48 57.43 ± 0.00 76.01 ± 1.11 80.10 ± 0.51 72.25 ± 1.71 77.75 ± 1.56

Can. Parl. 48.42 ± 0.66 58.61 ± 0.86 68.82 ± 1.21 65.34 ± 2.87 67.75 ± 1.00 62.16 ± 0.00 65.85 ± 1.75 69.48 ± 0.63 95.44 ± 0.57 97.29 ± 0.96
US Legis. 50.27 ± 5.13 83.44 ± 1.16 61.91 ± 5.82 67.57 ± 6.47 65.81 ± 8.52 64.74 ± 0.00 78.15 ± 3.34 79.63 ± 0.84 81.25 ± 3.62 85.61 ± 1.66
UN Trade 60.42 ± 1.48 60.19 ± 1.24 60.61 ± 1.24 61.04 ± 6.01 62.54 ± 0.67 72.97 ± 0.00 61.06 ± 1.74 60.15 ± 1.29 55.79 ± 1.02 60.43 ± 1.59

UN Vote 67.79 ± 1.46 67.53 ± 1.98 52.89 ± 1.61 67.63 ± 2.67 52.19 ± 0.34 66.30 ± 0.00 50.62 ± 0.82 51.60 ± 0.73 51.91 ± 0.84 60.05 ± 2.41

Contact 93.43 ± 1.78 94.18 ± 0.10 94.35 ± 0.48 90.18 ± 3.28 89.31 ± 0.27 85.20 ± 0.00 91.35 ± 0.21 90.87 ± 0.35 94.75 ± 0.28 94.63 ± 0.06

Avg. Rank 7.33 7.25 5.25 5.17 6.17 6.75 5.67 5.42 3.83 2.17

negative sampling strategies, respectively. DyG-Mamba achieves

the best average rank of 1.94/2.05 on AP/AUC, while the best-

performing baseline DyGFormer achieves 3.16/3.30. Furthermore,

as Figure 6(A) shows DyG-Mamba outperforms DyGFormer in

terms of averaged AUC scores, achieving improvements of 3.64%

and 1.83% in dynamic link prediction and node classification.

Comparison of Time andMemory. To demonstrate the efficiency

of DyG-Mamba, we present a comprehensive comparison with

the best-performing Transformer-based backbone, DyGFormer. As
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Figure 3: Ablation Studies for DyG-Mamba in both (A-B) transductive and (C-D) inductive settings.

shown in Figures 4(A)-(B), DyG-Mamba requires significantly less

training time and memory usage than DyGFormer when handling

long sequences. Specifically, DyG-Mamba is 8.9 times faster than
DyGFormer and saves 77.2% GPU memory with a sequence length of
2,048. For a fair comparison, we do not use the patching technique

for both DyGFormer and DyG-Mamba.
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Figure 4: Comparison of two layers DyGFormer and two
layers DyG-Mamba with varying lengths. (A) running time
consumption and (B) GPU memory consumption.

Comparison of Training Time and Parameters. By setting the

sequence length to 256, we conduct a comparative analysis of per-

formance, training time per epoch (measured in seconds), and size

of trainable parameters (measured in Megabyte, i.e., MB) between

DyG-Mamba and all baselines on the Enron dataset, as shown in

Figure 5. Obviously, CAWN requires the longest training time and

a substantial number of parameters, because it conducts random

walks on dynamic graphs to collect time-aware sequences for dy-

namic graph learning. On the other hand, simpler methods, e.g.,
the MLP-based GraphMixer and the RNN-based JODIE, have fewer

parameters, but exhibit a significant performance gap compared to

the best-performing DyGFormer and DyG-Mamba. Overall, DyG-

Mamba achieves the best performance with a small size of trainable

parameters and a moderate training time required per epoch.

Discussion and Analysis. From the above experimental results,

we obtain the following three conclusions: (i) Higher Effectiveness.
DyG-Mamba can achieve the best performance in temporal link

prediction and node classification tasks, demonstrating that DyG-

Mamba is more suitable for dealing with dynamic graph learning.

The reason is that DyG-Mamba can better track long-term tem-

poral dependencies, as detailed in Figure 7. Compared with the

best-performing baseline DyGFormer, based on self-attention ag-

gregation, DyG-Mamba based on the causal attention mechanism,

which can capture the evolving nature of node representations and

remove irrelevant historical neighbors for each timestamp (Figure 6).

Finally, the cross-attention scheme also helps DyG-Mamba exploit

JODIE
0.9744MB

TCL
3.5287MB

GraphMixer
2.9541MB

DyG-Mamba
3.1617MB

DyGFormer
4.8062MB

CAWN
15.3454MB

TGN
5.5716MB

DyRep
4.5350MB

TGAT
4.0166MB

ENRON

Epoch Time (s)

Figure 5: Comparison of model performance (AP), parameter
size (size of the circle) and training time (seconds) per epoch.

the correlations between nodes, which are often predictive of future

links (please refer to Figure 3). (ii) Better Generalizability. By incor-

porating time-spans as control signals for SSMs, DyG-Mamba can

establish a strong correlation between time-spans and evolution

laws of dynamic networks, i.e., how to balance historical memory

with the current input. In Figure 3, by removing time-span informa-

tion, we observe a significant drop in the inductive setting. On the

other hand, compared to data-independent Mamba, time informa-

tion is one kind of anonymous information, and DyG-Mamba can

improve generalization and easily apply to unseen nodes (w/o Time-

Span vs. DyG-Mamba in Figure 3). (iii) Greater Efficiency. DyG-
Mamba leverages the advantages of SSMs, employing a limited

number of parameters to remember or forget historical informa-

tion, thus achieving memory efficiency. Using parallel scanning

and hardware-aware training strategies, the time complexity of

DyG-Mamba approaches linearity (Figure 4).

Ablation Study. To evaluate the effectiveness of irregular time-

aware continuous SSMs, the selective mechanism, and the cross-

attention layer, we conduct ablation studies with the following

three variants: (i) w/o Time-span: we use the input data as con-

trol signals instead of time-spans, i.e., Δ = SiLU(Linear(𝒖 (𝑡)));
(ii) w/o Selective: following the same parameter settings of S4 [12],

i.e., all parameters are irrelevant with input data or time-spans; and

(iii) w/o Cross-attn: we remove the linear cross-attention layer. In

Figure 3, the removal of either component of DyG-Mamba nega-

tively impacts the ability of dynamic graph learning. Compared to

DyG-Mamba, the performance of data-dependent w/o Time-span

decreases significantly, especially in the inductive setting, show-

ing the effectiveness of time-spans as control signals. Secondly,

w/o Selective decreases the performance since the parameters are

fixed and cannot fit to dynamic networks well. Finally, the cross-

attention layer also brings a certain degree of performance gain.
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Figure 6: (A) Average AUC comparison. (B-D) An case study of historical attention mapping in DyG-Mamba and DyGFormer.
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Figure 7: Performance with varying sequence lengths.

5.2 Qualitative Evaluation
Sensitivity to Sequence Length. To show the ability to cap-

ture long-term dependencies of DyG-Mamba, we select three best-

performing baselines and depict their performance changing with

varying sequence lengths in Figure 7. We observe that the per-

formance of DyG-Mamba improves significantly with increasing

sequence length, showing its ability to model long sequences. DyG-

Mamba achieves better performance even with short sequence

lengths, showing its ability to learn dynamic graphs.

Robustness against Noise. We conduct robust tests by randomly

inserting 10% to 60% noisy edges with chronological timestamps

during the evaluation step. In Figure 8, as the noisy edges increase,

DyG-Mamba performance decreases to a minimum extent, indicat-

ing that DyG-Mamba has stronger robustness than baselines. This

is because DyG-Mamba adopts a selective mechanism that helps

select the most relevant content and remove irrelevant information.
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Figure 8: Robustness against noise, ranging from 0.1 to 0.6.

Time information Analysis. To evaluate the effectiveness of time

information in DyG-Mamba, we conduct additional ablation stud-

ies, as shown in Table 5. There are four settings of DyG-Mamba:

(i) [w/o Time-Encoding] refers to removing time encoding 𝑍𝜏
𝑢,𝑇

;

(ii) [w/o Time-Span] replaces time-span with data-dependent con-

trol signals; (iii) [w/o both Time] refers to removing both time-

encoding and time-span; (iv) [all Time-dependent] set parameters

𝑩 and 𝑪 from data-dependent to time-span dependent. From the

above Table 5, we observe that time information plays a crucial

role in DyG-Mamba. Specifically, the Time-span is key to captur-

ing irregular temporal patterns, which is essential for the overall

performance. Additionally, the time-encoding, which captures the

relative time to the current time, also contributes to performance

improvement, although to a lesser extent. Finally, although the

time-span is crucial for capturing temporal information, the model

entirely time-dependent will significantly reduce performance.

Table 5: Results (AP score) of time information ablations.

Settings Can. Parl. Enron UCI USLegis.

w/o Time-encoding 97.80±0.43 92.83±0.06 95.92±0.11 73.33±1.15
w/o Time-span 96.90±0.18 92.14±0.12 95.62±0.05 72.26±0.76
w/o both Time 96.87±0.18 92.08±0.12 95.54±0.08 72.19±0.72
all Time-dependent 79.24±0.58 82.25±0.16 94.16±0.66 70.57±0.84
DyG-Mamba 98.20±0.52 93.14±0.08 96.14±0.14 73.66±1.13

Attention Investigation. We conduct a case study to reveal the

attention mapping in DyG-Mamba. We aim to predict the link

between nodes 1181 and 1713. Figure 6(B) show the normalized

cosine similarity between the target node encoding and the last

hidden state in each model with respect to source node’s neighbors.

We observe that DyG-Mamba can better balance historical memory

with current input, i.e., it has higher similaritywhen input node 1713

is the source node’s neighbor. Figures 6(C)-(D) depict the normalized

cosine similarity between the last hidden state and the second-to-

last hidden state in each model. DyGFormer in Figures 6(C)-(D)

exhibits the highest similarity along the diagonal and an almost

uniform distributed similarity across all neighbors, indicating that it

struggles to distinguish the correct node. In contrast, DyG-Mamba

prioritizes important information and assigns higher scores to the

target node, showing the effectiveness of its selective mechanism.

6 Conclusion
In this work, we proposed a new SSM-based framework, DyG-

Mamba, designed to effectively and efficiently capture long-term

temporal dependencies on dynamic graphs. To achieve this goal,

we directly used irregular time-spans as controllable signals to

establish a strong correlation between dynamic evolution laws and

time information, further improving the model’s generalization

and robustness. By evaluating on various downstream tasks, DyG-

Mamba showed strong performance and applicability. We plan to

apply DyG-Mamba to real-world applications in the future.
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