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ABSTRACT
Hail nowcasting is a considerable contributor to meteorological
disasters and there is a great need to mitigate its socioeconomic
effects through precise forecast that has high resolution, long lead
times and local details with large landscapes. Existing medium-
range weather forecasting methods primarily rely on changes in
upper air currents and cloud layers to predict precipitation events,
such as heavy rainfall, which are unsuitable for hail nowcasting
since it is mainly caused by low-altitude local strong convection
associated with terrains. Additionally, radar captures the status of
low cloud layers, such as water vapor, droplets, and ice crystals,
providing rich signals suitable for hail nowcasting. To this end, we
introduce a Spatial-Temporal gEnerAtive Model called SteamCast
for hail nowcasting with radar echo extrapolation, it is a deep prob-
abilistic diffusion model based on spatial-temporal representations
including radar echoes as well as their position/time embeddings,
which we trained on historical reanalysis archive from Yan’an Mete-
orological Bureau in China, where the crop yield like apple suffers
greatly from hail damage. Considering the short-term nature of
hail, SteamCast provides 30-minute nowcasts at 6-minute intervals
for a single radar reflectivity variable, across 9 different vertical
angles, on a latitude-longitude grid with approximately 1 km × 1 km
resolution per pixel in Yan’an City, China. By successfully fusing
the spatial-temporal features of radar echoes, SteamCast delivers
competitive, and in some cases superior, results compared to other
deep learning-based models such as PredRNN and VMRNN.
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1 INTRODUCTION
Hail nowcasting is the task of predicting the occurrence, intensity,
and location of hail events. This involves analyzing a variety of me-
teorological data, such as temperature profiles and radar reflectivity,
to identify atmospheric conditions favorable for hail formation. The
goal is to provide timely warnings to the public and relevant au-
thorities so that they can take necessary precautions to mitigate
the impacts of hail on agriculture, infrastructure, and public safety.
Accurate hail forecasting is challenging due to the complex and
rapidly changing nature of the atmospheric conditions that lead to
hail, and it often necessitates advanced extrapolation techniques,
encompassing numerical weather prediction systems [1, 2] and
data-driven machine learning algorithms [3, 4].

Ensemble numerical weather prediction (NWP) systems often
struggle to deliver accurate precipitation forecasts with a lead time
of zero to two hours, primarily due to challenges in assimilating
non-Gaussian data [5]. As a result, alternative methods using radar
data, such as PySTEPS [2] and DARTS [1], have been developed
based on advection schemes, which are fundamentally rooted in
the continuity equation. However, current implementations of ad-
vection schemes fail to incorporate nonlinear evolution processes,
leading to reduced accuracy in precipitation nowcasts, such as
heavy rain reported in [4] and hailstorms analyzed in our study.

Deep-learning methods have been applied to precipitation now-
casting in recent years [6–9]. These methods aim to better capture
traditionally challenging non-linear precipitation phenomena, such
as convective initialization and extreme precipitation, by leverag-
ing large datasets of radar echoes to train neural networks, instead
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Figure 1: Comparison of our SteamCast in (c) with the DGM-based method in (a) and the physics-informed method in (b). Enhancing the
capability of capturing spatiotemporal features is one of the most important aspects of reliable precipitation nowcasting. Methods (b) and (c)
utilize a physical model and a well-designed spatiotemporal DGM to enhance the capability of capturing spatiotemporal features.

of relying on physical assumptions. This end-to-end data-driven
optimization effectively reduces inductive biases. Consequently, the
nowcast quality of these methods improves, as reflected in metrics
like the per-grid-cell Critical Success Index (CSI). However, these
methods encounter increasing uncertainty at longer lead times,
resulting in blurrier precipitation fields, which are critical for accu-
rate nowcasts of small-scale radar echo patterns. We speculate that
poor spatial-temporal representations limit the models’ operational
utility, preventing them from simultaneously providing consistent
predictions across multiple spatial and temporal scales. A large
step forward in enhancing spatial and temporal representations
has been the Deep Generative Model (DGM) of Radar called DGMR
[3] developed by DeepMind and the UK Met Office. DGMR is also
the first work employing DGM for precipitation nowcasting. Long
etal. [4] propose NowcastNet, a reliable nowcasting framework
that aggregates spatial-temporal features by integrating DGM with
physical knowledge of precipitation processes, including the conser-
vation law of cloud transport [1] and the rain rate distribution [10].
In contrast to physically informed spatial-temporal aggregation,
we propose an alternative approach by extracting spatial-temporal
features of radar echoes using a well-designed Spatial-Temporal
gEnerAtive Model called SteamCast.

We adopt a stable diffusion architecture [11] with slight yet
critical modifications to represent effective and flexible spatiotem-
poral radar echoes. We employ a lightweight condition encoder to
extract spatiotemporal features from a target patch and its neigh-
boring regions in eight directions for hail nowcasting. A stable
diffusion U-Net layer then merges the randomly initialized patch
with these features to generate 30-minute nowcasting results. Lever-
aging cross-attention, our model effectively captures radar echoes
and adapts to forecasting tasks with flexible input (𝑁 ) and output
(𝑀) lengths. Additionally, to enhance efficiency under limited com-
puting resources, we process radar images in smaller sub-problems
instead of full 𝐻 ×𝑊 resolution, seamlessly aggregating the re-
sults. In summary, SteamCast introduces a stable diffusion-based
architecture with an efficient spatial-temporal feature extraction

mechanism, enabling flexible and high-resolution hail nowcast-
ing. By improving forecasting adaptability, reducing computational
overhead, and enhancing multi-scale consistency, SteamCast pro-
vides a practical and scalable solution for operational precipitation
nowcasting.

2 RELATEDWORK AND KNOWLEDGE
2.1 Related Work
One of the earliest deep learning-based methods is the ConvLSTM
Network for precipitation nowcasting [9], in which the authors
framed nowcasting as a spatiotemporal sequence-to-sequence prob-
lem and proposed a cascaded Convolutional LSTM for its solution.
Similarly, PredRNN [6] introduced a spatiotemporal memory flow
mechanism for complex pattern nowcasting. More recently, DGM-
based methods have gained significant attention for addressing this
challenge task [4, 8], as previously discussed. In this work, we focus
on hail nowcasting, which represents a novel and significant task.
Unlike heavy rainfall, hail formation is strongly associated with
terrains, making precise modeling of spatiotemporal correlations
crucial for hail nowcasting, a topic that has been rarely studied.

2.2 Diffusion Models
Diffusion models are a class of generative models that generate
new data by iteratively denoising a noisy sample drawn from a
simple prior distribution. The generation process is formulated as
a reverse Markov chain, where each step progressively removes
noise to recover the original data distribution. These models have
achieved state-of-the-art performance in various generative tasks,
including image, text, and audio synthesis.

3 METHODOLOGY
3.1 Task Definition
We consider reference patches of radar echoes denoted by {𝒙𝑟

𝑖
}𝑇
𝑖=1,

where 𝒙𝑟
𝑖
∈ R𝑇×𝐻×𝑊 ×𝑁 . Here 𝑇 , 𝐻 ,𝑊 , and 𝑁 separately denote

the number of reference patch, patch height, patch width, and
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Figure 2: SteamCast architecture details. SteamCast adopts a SD architecture with slight yet critical modifications to effectively and flexibly
represent spatiotemporal radar echoes. Left: The pre-trained encoder in SD captures features from the target patch of radar echoes, the target
patch consists of 𝑀 nowcasted time steps. Middle: In U-Net, we apply self-attention within the target patch to encourage target-to-target
consistency. We also apply a cross-attention block between the target patch and𝑇 reference patches to enhance reference-to-target consistency.
In each attention block, SpEn is employed for the key and query, enabling the attention map to capture relative positions and time steps. Right:
The pre-trained encoder in SD and projection layer capture features from𝑇 reference patches, each patch contains 𝑁 historical time steps.

historical time steps. Similarly, the target patch is denoted by 𝒙𝑡
𝑗
∈

R1×𝐻×𝑊 ×𝑀 corresponding to the 𝑗-th reference patch. Here 𝑗 =
{1, ...,𝑇 } and𝑀 is the number of nowcasted time steps. Our goal is
to train a nowcastingmodel �̂�𝑡𝑗 = 𝑓𝜽 ({𝒙

𝑟
𝑖
}𝑇
𝑖=1) such that ∥𝒙

𝑡
𝑗
−�̂�𝑡𝑗 ∥ ≤

𝜖 , where 𝜖 is a small positive value. We randomly select a target
patch from the reference patch set to train the model.

3.2 SteamCast Architecture
The architecture details of SteamCast, as shown in Fig. 2, are de-
signed based on two key principles: 1) It leverages existing image-
based diffusion models to inherit their powerful generalization
capabilities. 2) It encodes spatiotemporal information for each to-
kenized input patch, enabling the model to process an arbitrary
number of patches and time steps for flexible nowcasting.
Target Patch Generation : SteamCast is designed by adopting
the architecture of the Stable Diffusion v1.5 (SD) [11]. To adapt SD,
which was originally designed for text-to-image generation, for hail
nowcasting using radar extrapolation, several key modifications
are implemented. First, we reimplement the self-attention block
in the original SD to calculate interactions within the target patch
across𝑀 different nowcasted time steps, thereby enhancing target-
to-target consistency. For the cross-attention block in the original
SD, we modify it to calculate interactions from 𝑇 reference patches
to the target patch, ensuring reference-to-target consistency. The
features extracted by the SD encoder are 𝒉𝑡𝑗 ∈ R𝑏×𝑑 , where 𝑏 =

(ℎ ×𝑤) ×𝑀 , with ℎ ×𝑤 is the total number of tokenized features.
Reference Patches Condition: In hail nowcasting, it is crucial
that the conditioning features accurately capture the texture details
present in the reference patches, which has often been overlooked
in previous studies. In SteamCast, we treat reference patches as sets
of tokens and use an image encoder to extract such conditioning
signals. This approach enables us to maintain flexibility in han-
dling a variable number of patches and time steps. We choose to
compress the reference patches to smaller resolution features with
ConvNeXtv2-Tiny [12], a lightweight and highly efficient CNN
architecture. The features of the reference patches after CNN are
expressed as 𝒉𝑟𝑖 ∈ R𝑏

′×𝑑 for 𝑖 = 1, ...,𝑇 , where 𝑏′ = (ℎ′ ×𝑤 ′) × 𝑁 ,
with ℎ′ ×𝑤 ′ the total number of tokenized features. The features

after the self-/cross-attention block with SpEn can be written as
�̂�
𝑡
𝑗 , �̂�

𝑡
𝑗 ∈ R𝑏×𝑑 . Details on SpEn are provided in Sec. 3.3.

Model Training and Inference: We use the original SD objec-
tive, which is to reconstruct the error, to fine-tune the parameters
of SteamCast, which is initialized with pre-trained SD v1.5 and
ConvNeXtV2-Tiny. During inference, SteamCast takes a set of refer-
ence patches with 𝑁 historical time steps and a randomly initialized
target patch with𝑀 nowcasted time steps. Then it provides users
with the corresponding nowcasting for the target patch of interest.

3.3 Spatiotemporal Encoding (SpEn)
To efficiently encode spatiotemporal information into the reference
and target patches in the U-Net layer of SD, we propose SpEn, in-
spired by advancements in the language domain. For illustration,
consider the 𝑖-th reference patch at the 𝑛-th time step, denoted as
𝒉𝑟𝑖 (:, 𝑛). Suppose there are 4×4 = 16 reference patches and 5+5 = 10
time steps, with 5 for historical time steps and 5 for nowcasting.
Time and position indexes can be separately represented by 4-D
binary vectors (⌈𝑙𝑜𝑔2𝐾⌉). We employ the standard Sin/Cos embed-
ding scheme used in Transformers [13] to encode each index (time
or position), resulting in an encoded vector 𝝆 ∈ R1×8. The final
spatiotemporal embedding is obtained by repeating 𝝆 to match the
length of 𝒉𝑟𝑖 (:, 𝑛) along the last dimension. Hence, the tokenized
feature after SpEn can be expressed as �̂�𝑟𝑖 (:, 𝑛) = 𝝆 ⊙𝒉𝑟𝑖 (:, 𝑛), where
⊙ represents element-wise multiplication.

4 EXPERIMENTS
4.1 Experimental Setups
Dataset:We use the 2-year historical reanalysis archive of radar
reflectivity measurements with a resolution of 1024×1024×3 from
Yan’an Meteorological Bureau in China to validate the performance
of SteamCast. The interval between two adjacent measurements
is 6-minute. We collect a total of 10,000 radar reflectivity patches
using a sliding window with size of 10 × 256 × 256 × 3 without
overlapping across the entire historical dataset. Then, we randomly
split the entire set of patches into 6,400, 1,600, and 2,000 patches
for training, validation, and testing, respectively.
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Figure 3: Visualization results of hail nowcasting. Input and GT
denote target patches of 5 historical and 5 future time steps, respec-
tively. PredRNN, CMS, and VMRNN represent nowcasting results
from the respective competitors. SpEn represents the hail nowcast
of SteamCast. NoEmbd and TimeEmbd represent hail nowcasts from
our two variants, as discussed in Sec. 4.3 of the ablation studies.

Competing Methods:We compare our SteamCast with some of
the most recently proposed spatiotemporal prediction methods,
including: 1) PredRNN [6]: A spatiotemporal recurrent network. 2)
CMS [14]: Amemory-based convolutional network. 3) VMRNN [15]:
A memory-based recurrent network with variational autoencoding.
Evaluation Protocols:We use the following metrics to evaluate
performance, including: 1) MSE (Mean Squared Error): Pixel-wise
difference between the ground truth and predicted target patches.
2) PSNR (Peak Signal-to-Noise Ratio): Reflects the quality of the pre-
dicted target patches, with higher values indicating better quality. 3)
SSIM (Structural Similarity Index): Assesses the structural similarity
between the ground truth and predicted target patches, considering
luminance, contrast, and texture. 4) ETS (Equitable Threat Score):
Measures the prediction accuracy for rare event predictions. 5) ACC
(Accuracy): Measures the overall prediction accuracy.
Implementation Details: We use the encoder and decoder of
SD v1.5 [11] to separately extract features of the target patch
and generate the nowcasted target patch during training. We use
ConvNeXtv2-Tiny [12] to extract features of the set of reference
patches. The U-Net layer is a modified version from SD v1.5. We
use the pre-trained parameters of SD v1.5 and ConvNeXtv2-Tiny
to initialize our SteamCast. Our model is trained with the follows
hyper-parameters: batch size 4, learning rate 1 × 10−4, AdamW
optimizer [16], training steps 100,000. Additionally, we use mixed

Table 1: Nowcasting performance on various metrics. The
best results are in bold.

Model MSE ↓ PSNR ↑ SSIM ↑ ETS ↑ ACC ↑
PredRNN (TPAMI’22) 0.05 13.86 0.62 0.08 0.96

CMS (ICME’22) 0.06 13.09 0.60 0.07 0.96
VMRNN (CVPR’24) 0.03 17.02 0.79 0.10 0.97
SteamCast (Ours) 0.02 23.15 0.81 0.18 0.99

Table 2: Ablation studies on spatial and temporal embeddings
with various metrics. The best results are in bold.

Position Time MSE ↓ PSNR ↑ SSIM ↑ ETS ↑ ACC ↑
- - 0.40 10.00 0.43 0.01 0.97
- ✓ 0.05 23.21 0.74 0.16 0.98
✓ ✓ 0.02 23.15 0.81 0.18 0.99

precision training for acceleration. The experiments are conducted
with two NVIDIA GTX 4090 GPUs.

4.2 Enumerated Results
Quantitative results:We compare SteamCast with recent state-
of-the-art methods, and the results are presented in Table 1. All
competing models are designed for spatiotemporal prediction, aim-
ing to nowcast the target patch for the next 30 minutes based on
historical observations. SteamCast consistently outperforms other
methods across various metrics, demonstrating its effectiveness in
hail nowcasting. Given the rarity of hail events, ACC is not a reliable
metric for evaluating predictive improvements. Instead, the Equi-
table Threat Score (ETS), which accounts for both true positives and
random chance, provides a more meaningful assessment. SteamCast
achieves a notable ETS increase from 0.10 to 0.18, demonstrating a
substantial enhancement in hail detection capability.
Qualitative results:We report visualized nowcasting results of a
hail event in Fig. 3. As we can see, our model achieves promising
performance compared with others not only in correct trends but
also in richer details.

4.3 Ablative Analysis
We emphasize the importance of properly aggregating spatiotempo-
ral information of the target patch. To achieve this, we designed two
additional variants of SteamCast: 1) NoEmbd: without time and po-
sition embeddings. 2) TimeEmbd: employing only time embedding.
According to the results in Table 2, we find that leveraging time
and position embeddings contributes significantly to improved per-
formance. Additionally, qualitative results in Fig. 3 further support,
in a more intuitive way, that SpEn is indispensable.

5 CONCLUSION
Our study demonstrates that SteamCast, a spatial-temporal deep
probabilistic diffusion model, enhances the accuracy and adapt-
ability of hail nowcasting. Its potential applications span preci-
sion agriculture, disaster prevention, and urban resilience planning,
where timely and accurate hail forecasts can helpmitigate economic
losses and societal disruptions. Future work will focus on integrat-
ing multi-source meteorological data and enhancing long-term
forecasting capabilities to further improve predictive performance.
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