
Work Smarter, Not Harder: Towards An Efficient and Effective En
Route Travel Time Estimation Framework

Zekai Shen1, Haitao Yuan2∗, Xiaowei Mao1, Congkang Lv1, Shengnan Guo1,3∗,
Youfang Lin1,3, Huaiyu Wan1,3

1School of Computer Science and Technology, Beijing Jiaotong University, China
2Nanyang Technological University, Singapore

3Beijing Key Laboratory of Traffic Data Analysis and Mining, China
{zkshen, maoxiaowei, congkanglv, guoshn, yflin, hywan}@bjtu.edu.cn, 2haitao.yuan@ntu.edu.sg

ABSTRACT
En route travel time estimation (ER-TTE) focuses on predicting
the travel time of the remaining route. Existing ER-TTE methods
always make re-estimation which significantly hinders real-time
performance, especially when faced with the computational de-
mands of simultaneous user requests. This results in delays and
reduced responsiveness in ER-TTE services. We propose a general
efficient framework combining an Uncertainty-Guided Decision
mechanism (UGD) and Fine-Tuning with Meta-Learning (FTML)
to address these challenges. UGD quantifies the uncertainty and
provides confidence intervals for the entire route. It selectively
re-estimates only when the actual travel time deviates from the
predicted confidence intervals, thereby optimizing the efficiency of
ER-TTE. To ensure the accuracy of confidence intervals and accu-
rate predictions that need to re-estimate, FTML is employed to train
the model, enabling it to learn general driving patterns and specific
features to adapt to specific tasks. Extensive experiments on two
large-scale real datasets show that our framework can enhance
inference speed by 2 to 6 times and increase throughput by 2 to
5 times while maintaining high effectiveness, demonstrating our
framework’s efficiency and effectiveness.

CCS CONCEPTS
• Applied computing→ Forecasting; • Spatialtemporal sys-
tems;

KEYWORDS
Travel time estimation, Uncertainty quantification, Efficiency

ACM Reference Format:
Zekai Shen1, Haitao Yuan2∗, Xiaowei Mao1, Congkang Lv1, Shengnan
Guo1,3∗,, Youfang Lin1,3, Huaiyu Wan1,3. 2018. Work Smarter, Not Harder:
Towards An Efficient and Effective En Route Travel Time Estimation Frame-
work. In Proceedings of (WWW’25). ACM, New York, NY, USA, 9 pages.
https://doi.org/XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WWW’25, April 28-May 02, Sydney, Australia
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

Remaining RouteTraveled Route

Route

T
ra

v
e
l

T
im

e

Driving Progress

true

pred

Traveled Time in the

Confidence Interval T
ra

v
e
l

T
im

e

Driving Progress

true

pred

Traveled Time not in the

Confidence Interval

Case 1 Case 2

Retain Re-estimate

Figure 1: Uncertainty quantification in ER-TTE according to
confidence intervals to decide whether to re-estimate.

1 INTRODUCTION
Travel Time Estimation (TTE) serves as a cornerstone of Intelli-
gent Transportation Systems (ITS)[26], enabling the prediction of
travel time for specific routes with departure time. This capability
is crucial for a host of ITS applications, such as route planning
[30], navigation [29], traffic forecasting [10, 25], and online ride-
hailing services [15]. Most TTEmethods are referred to as pre-route
travel time estimation (PR-TTE) due to their focus on predicting the
whole travel time before departure [23]. However, numerous practi-
cal TTE requirements are en route travel time estimations (ER-TTE),
necessitating the real-time TTE process when driving. Although
some studies [5, 6] have developed models for effective ER-TTE by
integrating information on traveled routes and dynamic features,
they often fail to simultaneously account for the model efficiency
in real-time settings, which significantly impede the practical ap-
plication of these models. To bridge this gap, the development of
an efficient and effective ER-TTE framework faces the following
challenges.

C1: How to reduce the number of invoking estimation models
without losing accuracy? To provide timely navigation updates, ER-
TTE must refresh remaining travel time estimates during the route.
However, frequent model invocations cause delays due to inference
time, and high concurrent user requests further strain system ca-
pacity. For instance, Didi reported an average of 33.01 million daily
orders in China in Q3 2024 [1], illustrating the demand for simul-
taneous ER-TTE updates. Limited server processing power may
lead to delays for some users. Therefore, minimizing unnecessary
model calls while maintaining accuracy is essential to improving
efficiency and throughput.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

WWW’25, April 28-May 02, Sydney, Australia Zekai Shen et al.

C2: How to ensure the robustness of the TTE model throughout the
route? It’s essential to balance general driving patterns with route-
specific conditions. The model should learn common travel patterns
across routes while quickly adapting to individual driving styles,
such as unique acceleration or braking habits. Additionally, it must
promptly adjust to unexpected conditions like traffic congestion
or accidents to deliver accurate, real-time predictions. However,
existing approaches [5, 6] mainly emphasize capturing user driving
preferences. Although useful, these models often lack the flexibility
to adapt to dynamically changing traffic situations based on real-
time information.

In this paper, we introduce an efficient and effective framework
to tackle the key challenges in ER-TTE, featuring an innovative
Uncertainty-Guided Decision (UGD) mechanism and Fine-Tuning
with Meta-Learning (FTML). The UGD mechanism optimizes re-
quest handling by strategically reusing previous estimates, thus
minimizing redundant computations. As shown in Figure 4, the
system first quantifies uncertainty across the entire route and stores
confidence intervals. During travel, it monitors actual travel time. If
travel time remains within the confidence intervals, the estimate is
retained, avoiding unnecessary re-estimations. The ER-TTE is then
derived by subtracting elapsed time from the initial estimate. Only
when significant deviations occur, indicating changed traffic condi-
tions, does the system trigger re-estimation. This UGD mechanism
reduces model invocation frequency, addressing the challenge of
high request volumes (i.e., addressing C1). Additionally, FTML
is introduced to enhance prediction accuracy, using MAML [8] to
pre-train on general driving patterns and then fine-tune for specific
tasks, allowing rapid adaptation to route dynamics while preserving
generalizability (i.e., addressing C2). Therefore, UGD and FTML
significantly boost both the effectiveness and efficiency of ER-TTE.

In summary, the contributions can be summarized as follows:
(1) To our best knowledge, this study is the first to consider the

efficiency of ER-TTE and achieve an efficient and effective ER-
TTE framework.

(2) We propose an Uncertainty-Guided Decision mechanism (UGD)
that determines adaptively whether ER-TTE needs to be re-
estimated, offering a novel approach that can be integrated
with existing TTE backbone models.

(3) We develop a new training strategy called Fine-Tuning with
Meta-Learning (FTML) that enhances both generalizability and
adaptability.

(4) Experiments on two large-scale real-world datasets verify the
efficiency and effectiveness of the framework. Our approach
significantly improves inference speed and throughput while
maintaining high performance.

2 RELATEDWORK
2.1 Travel Time Estimation
Travel time estimation can be classified the two types Origin-
Destination based TTE (OD-TTE) and route-based TTE. OD-TTE
refers to estimating travel time by providing only the origin, des-
tination, and departure [15, 16, 18, 19, 22, 28],. In contrast, Route-
based TTE requires additionally specific route information. Early
route-based research utilizes regression or decomposition methods
[11], achieving limited accuracy due to their constrained modeling

capabilities. Recent advances have brought significant improve-
ments: WDR [23] and its variant [17] employ wide-deep-recurrent
networks for comprehensive route analysis; ConSTGAT [7] uti-
lizes a graph attention network to extract the joint relationship
of spatiotemporal information. [4] Using the graph neural net-
work for TTE on Google Maps significantly improves effectiveness.
DeepGTT [14] employs a variational encoder to capture the travel
time distributions of trajectories to enhance prediction accuracy.
HierETA [3] leverages Transformer and uses multi-view model-
ing. STHR [27] considers key characteristics in travel routes and
combines the advantages of graph attention networks and Trans-
formers. In the specific domain of ER-TTE, SSML [6] pioneered
the meta-learning application, extracting meta-knowledge from
traveled routes to predict remaining travel times. MetaER-TTE
[5] advanced this approach with cluster-aware initialization and
adaptive learning rate optimization. However, these methods focus
on specific locations, rather than continuous route progression,
which leads to efficiency issues and practical limitations in ER-TTE
applications.

2.2 Uncertainty Quantification
Uncertainty quantification methods, widely applied to real-world
problems, fall into two categories: Bayesian and non-Bayesian ap-
proaches [2]. Bayesian methods face the difficulty of directly calcu-
lating the posterior distribution, necessitating the use of approx-
imate methods such as variational inference and Markov chain
Monte Carlo (MCMC). Bayesian neural networks (BNNs) [21] uti-
lize approximate Bayesian inference to enhance the efficiency of
their inferential processes. Monte Carlo dropout (MC Dropout) [9]
assumes that the parameters of each layer of the neural network
follow a Bernoulli distribution, thereby controlling the drop prob-
ability of hidden layer neurons. Non-Bayesian methods, typically
frequentist in nature, offer greater flexibility through techniques
like quantile regression [12] and MIS regression [24], which embed
uncertainty directly into loss functions.

3 PRELIMINARY
We first present the definition of the ER-TTE problem. Then, we
describe how meta-learning is applied to ER-TTE and propose
a pipeline with the Uncertainty-Guided Decision mechanism to
achieve efficient and effective ER-TTE.

3.1 En Route Travel Time Estimation
Given a driving route 𝑅 = [𝑠1, 𝑠2, . . . , 𝑠𝑛] composed of 𝑛 road seg-
ments, and considering current segment 𝑠𝑚 (1 ≤ 𝑚 < 𝑛) at time
𝑡 , the route can be segmented into two parts: traveled route 𝑅𝑡𝑟 =

[𝑠1, 𝑠2, . . . , 𝑠𝑚] and remaining route𝑅𝑟𝑒 = [𝑠𝑚+1, 𝑠𝑚+2, . . . , 𝑠𝑛]. Specif-
ically, the travel time for the traveled portion of route 𝑅𝑡𝑟 is known
and denoted as 𝑦𝑡𝑟 . The objective of the en route travel time estima-
tion (ER-TTE) task is to predict the travel time for the remaining
portion of route 𝑅𝑟𝑒 . This task can be formally described by func-
tion:

𝑦𝑟𝑒 = 𝑓𝜃 (𝑡, 𝑦𝑡𝑟 , 𝑅𝑡𝑟 , 𝑅𝑟𝑒),
where 𝑓𝜃 denotes the ER-TTE model, 𝜃 represents the model pa-
rameters, 𝑡 is the current time, and 𝑦𝑟𝑒 is the estimated travel time
for 𝑅𝑟𝑒 .

Work Smarter, Not Harder: Towards An Efficient and Effective En Route Travel Time Estimation Framework WWW’25, April 28-May 02, Sydney, Australia

𝑠1 𝑠2 𝑠3 𝑠4 𝑠5 𝑠6 𝑠7 𝑠8 𝑠9 𝑠10

𝑅

𝑡𝑡𝑟

𝑅𝑟𝑒

𝑡𝑟𝑒

𝑅𝑡𝑟

Support set

D𝑠
Query set

D𝑞

Figure 2: An explanation of Meta-Learning for ER-TTE

𝑟𝑒𝑞 = (𝑅, 𝑡) መ𝐥, ො𝐲, ෝ𝐮 = 𝑓(𝑅, 𝑡)
2 3 Retain estimation

𝑦𝑡𝑟 ∈ [መ𝑙𝑡𝑟, ො𝑢𝑡𝑟]

Re-estimation

𝑦𝑡𝑟 ∉ [መ𝑙𝑡𝑟 , ො𝑢𝑡𝑟]

Repeat

Query [መ𝑙𝑡𝑟, ො𝑢𝑡𝑟]
Compare 𝑦𝑡𝑟

UGD

training data

1

FTML
Backbone model 𝑓

3

Figure 3: Overview of our ER-TTE framework.

3.2 Meta-Learning in ER-TTE
Meta-learning, commonly called "learning to learn", is designed to
train models capable of rapidly adapting to new tasks with limited
new data. This approach enables a meta-learner to guide the model
in effectively learning from diverse tasks. In the context of the ER-
TTE problem, meta-learning is employed to discern general patterns
of the entire routes, allowing the model to tailor its predictions to
the specific nuances of ER-TTE scenarios. Such as the traveled
routes contain driver preferences such as acceleration.

In the meta-learning framework applied to ER-TTE, the dataset
is strategically split into a support set and a query set. Following
the setting of prior research [5, 6], the traveled portion of the route
𝑅𝑡𝑟 is utilized as the support set D𝑠 , while the untraveled segment
𝑅𝑟𝑒 is treated as the query set D𝑞 . This division aids the model in
leveraging past experiences (support set) to make informed predic-
tions about future segments (query set) of the route. A graphical
representation of the support and query sets for a specific route is
illustrated in Figure 2. This methodological approach underscores
the adaptability and foresight that meta-learning imparts to the
ER-TTE model.

4 METHODOLOGY
In this section, we first outline the complete framework in Sec. 4.1.
Specifically, two key modules (i.e., UGD and FTML) are discussed
in greater detail in Sec. 4.2 and Sec. 4.3, respectively.

4.1 Overview
To enhance the efficiency and accuracy of the ER-TTE process, we
propose a simple yet effective framework as depicted in Figure
3. At first, for a given request 𝑟𝑒𝑞 = (𝑅, 𝑡), the model 𝑓 first esti-
mates the travel time ŷ and the associated confidence intervals for
the entire route before departure, utilizing the Fine-Tuning with
Meta-Learning (FTML) strategy. The initial confidence intervals,
denoted as l̂ and û, encapsulates the predicted travel time from
the origin to the destination. Subsequently, during the route, the
Uncertainty-Guided Decision (UGD) mechanism is employed to
continuously assess the alignment between the actual travel time

and the estimated confidence intervals. If the actual travel time 𝑦𝑡𝑟
falls within the current confidence interval [𝑙𝑡𝑟 , 𝑢𝑡𝑟], the existing
estimation is retained. Conversely, if 𝑦𝑡𝑟 deviates from [𝑙𝑡𝑟 , 𝑢𝑡𝑟], a
re-estimation is triggered using model 𝑓 , and this validation cycle
is repeated throughout the route to ensure reliable predictions.
Remark. We divide the entire route for 𝑘 parts. The terms l̂ =

{𝑙1, 𝑙2, ..., 𝑙𝑘 } and û = {𝑢1, 𝑢2, ..., 𝑢𝑘 } represent the lower and upper
bounds of the confidence intervals of the entire route, representing
the complete range of expected travel times from origin to des-
tination. In contrast, [𝑙, 𝑢] specifies the confidence interval at a
particular point along the route.

4.2 Uncertainty-Guided Decision Mechanism
Motivation. To improve the efficiency of ER-TTE and minimize
system resource consumption under the large request frequency, it
is intuitive to design a decision mechanism to determine whether
a re-estimation is needed at the request time 𝑡 during the driving.
Travel time is influenced by unpredictable factors, such as traffic
congestion and road accidents, which introduce uncertainty into the
predictions. Therefore, quantifying uncertainty allows us to capture
the variability in TTE. Accordingly, we propose an Uncertainty-
Guided Decision (UGD) Mechanism, quantifying the uncertainty
in the route to make decisions.
Overview. As illustrated in Figure 4b, the Uncertainty-Guided
Decision (UGD) process is categorized into two distinct phases: pre-
route query and en route query. Initially, in the pre-route query phase,
the trained backbone model is utilized to compute the confidence
intervals for each route prior to departure, which are then stored in
the TTE database. Subsequently, in the en route query phase, these
confidence intervals are employed to verify the accuracy of ongoing
predictions. If the actual travel time deviates from the established
confidence intervals, indicating the necessity for adjustments, the
model is invoked to re-estimate the travel time for the remainder
of the route, updating the corresponding confidence intervals in
the TTE database accordingly. If the current predictions fall within
the confidence intervals, the existing estimations are retained to
respond to the en route queries. Notably, the key point is to calculate,
store, and update confidence intervals due to that the confidence
intervals provide a solid foundation for decision-making.
Decision-Making Algorithm. The entire procedure employing
the Uncertainty-Guided Decision (UGD) mechanism is outlined in
Algorithm 1. Initially, we utilize the model to generate preliminary
predictions for the pre-route query, represented as ŷ, along with
the associated confidence intervals for the entire route, denoted as l̂
(lower bounds) and û (upper bounds) (lines 1-3). These predictions
and confidence intervals are subsequently stored in a database, lay-
ing the groundwork for the en route query stage. There are 𝑘 parts
in the route which system queries at specific locations. For each
part 𝑖 ,the system compares the actual travel time 𝑦𝑖𝑡𝑟 with confi-
dence interval [𝑙𝑖𝑡𝑟 , 𝑢𝑖𝑡𝑟]. If the actual travel time resides within the
confidence interval, i.e.,𝑦𝑖𝑡𝑟 ∈ [𝑙𝑖𝑡𝑟 , 𝑢𝑖𝑡𝑟], the prediction is considered
accurate, and the original estimate is retained. The ER-TTE is calcu-
lated by subtracting the prediction for the traveled route from the
initial estimate (lines 7-9). Conversely, if the actual travel time falls
outside the confidence interval i.e., 𝑦𝑖𝑡𝑟 ∉ [𝑙𝑖𝑡𝑟 , 𝑢𝑖𝑡𝑟], this discrepancy
suggests significant uncertainty and possible inaccuracies in the

WWW’25, April 28-May 02, Sydney, Australia Zekai Shen et al.

Pre-Route Query

ෝ𝒚𝒕𝒓
𝒊 ∉ [መ𝒍𝒕𝒓

𝒊 , ෝ𝒖𝒕𝒓
𝒊]

…

Route Requests

Re-estimate

Store

Update

ෝ𝒚𝒕𝒓
𝒊 ∈ [መ𝒍𝒕𝒓

𝒊 , ෝ𝒖𝒕𝒓
𝒊]

Retain

Backbone

Model

Trained

1

2
En Route query

… …

𝒚𝒕𝒓
𝟏

𝒚𝒕𝒓
𝟐

𝒚𝒕𝒓
𝒌

… …

Request 2

[መ𝒍𝒕𝒓
𝟏 , ෝ𝒖𝒕𝒓

𝟏]

[መ𝒍𝒕𝒓
𝟐 , ෝ𝒖𝒕𝒓

𝟐]

[መ𝒍𝒕𝒓
𝒌 , ෝ𝒖𝒕𝒓

𝒌]

… …

… …

…

[𝐋𝟐, ෠𝐘𝟐, 𝐔𝟐]

መ𝐥𝒌, ො𝐲𝒌, ෝ𝐮𝒌

መ𝐥𝟏, ො𝐲𝟏, ෝ𝐮𝟏

TTE Database

መ𝐥𝟐, ො𝐲𝟐, ෝ𝐮𝟐

(a) Fine-Tuning with Meta-Learning.

Backbone

Model 𝜽
Backbone

Model 𝜽′Update

Params

𝓛𝒑𝒓𝒆

𝓛𝒑𝒓𝒆 𝓛𝒇𝒕

Pre-training
1

Fine-tuning
2

Traveled Route 𝑹𝒕𝒓 Remaining Route 𝑹𝒕𝒓

Learn

General

Patterns

Adapts to

Specific

Task

(b) Uncertainty-Guided Decision.

Figure 4: Overall Framework

Algorithm 1 Uncertainty-Guided Decision.
Require: Entire route 𝑅; traveled routes {𝑅1𝑡𝑟 , 𝑅2𝑡𝑟 , ..., 𝑅𝑘𝑡𝑟 };

Remained routes {𝑅1𝑟𝑒 , 𝑅2𝑟𝑒 , ..., 𝑅𝑘𝑟𝑒 }; trained model 𝑓𝜃 ;

1: // Pre-route query
2: l̂, ŷ, û = 𝑓𝜃 (𝑅, 𝑡);
3: UGD.store(confidence intervals);
4: // En route query during the route
5: for 𝑖 ←− 1...𝑘 do:
6: UGD.query(𝑦𝑖𝑡𝑟 , 𝑅𝑖𝑡𝑟) ;
7: if 𝑦𝑖𝑡𝑟 ∈ [𝑙𝑖𝑡𝑟 , 𝑢𝑖𝑡𝑟]:
8: // actual traveled time 𝑦𝑖𝑡𝑟 falls within confidence

interval
9: [𝑙𝑖𝑟𝑒 , 𝑦𝑖𝑟𝑒 , 𝑢𝑖𝑟𝑒] = [𝑙 − 𝑙𝑖𝑡𝑟 , 𝑦 − 𝑦𝑖𝑡𝑟 , 𝑢 − 𝑢𝑖𝑡𝑟];
10: else: // re-estimation
11: [𝑙𝑖𝑟𝑒 , 𝑦𝑖𝑟𝑒 , 𝑢𝑖𝑟𝑒] = 𝑓𝜃 (𝑡, 𝑦𝑖𝑡𝑟 , 𝑅𝑖𝑡𝑟 , 𝑅𝑖𝑟𝑒);
12: UGD.update(confidence intervals)
13: end for

prediction, necessitating a re-estimation. In such cases, the system
recalculates the travel time using updated route information. (lines
10-12).

Formally, the application of UGD in the en route query can be
represented by the following equation:

UGD
(
𝑡, 𝑦𝑡𝑟 , 𝑅𝑡𝑟 , 𝑅𝑟𝑒 , [𝑙𝑡𝑟 , 𝑢𝑡𝑟]

)
=

{
𝑦 − 𝑦𝑡𝑟 if 𝑦𝑡𝑟 ∈ [𝑙𝑡𝑟 , 𝑢𝑡𝑟],
𝑓 (𝑡, 𝑅𝑡𝑟 , 𝑅𝑟𝑒) if 𝑦𝑡𝑟 ∉ [𝑙𝑡𝑟 , 𝑢𝑡𝑟] .

(1)
Efficiency Analysis. The backbone model complexity is 𝑂 (𝑚),
where𝑚 depends on the components of model and input dimen-
sions. When the UGD decides to retain estimation, the need for
re-invoking the backbone model is bypassed, thereby reducing the
complexity to 𝑂 (1). Specifically, assuming a confidence level of 𝑝
(e.g., 𝑝 = 0.8), indicating that there is an 80% probability that no
re-estimation will be needed for a given request during the route,
the process predominantly operates at 𝑂 (1) complexity. As the

confidence level increases, the proportion of requests that do not
require re-estimation grows, leading to a further reduction in over-
all time complexity. Consequently, The computational overhead is
significantly reduced.

Algorithm 2 Fine-Tuning with Meta-Learning.
Require: Entire route 𝑅; traveled route 𝑅𝑡𝑟 ; model parameters 𝜃 ;
total epoch N; total iteration 𝑛iter.
1: for i← 1 to N:
2: while 𝑛 < 𝑛iter:
3: // pre-train
4: 𝑙, 𝑦,𝑢 = 𝑓𝜃 (𝑅); 𝑙𝑡𝑟 , 𝑦𝑡𝑟 , 𝑢𝑡𝑟 = 𝑓𝜃 (𝑅𝑡𝑟).
5: compute the loss function according to Equation (8);
6: Update 𝜃 ′ ← 𝜃 − 𝑙𝑟 · ∇𝜃L𝑝𝑟𝑒 (𝜃);
7: // fine-tune
8: 𝑙𝑟𝑒 , 𝑦𝑟𝑒 , 𝑢𝑟𝑒 = 𝑓𝜃 ′ (𝑅𝑟𝑒 , 𝑅𝑡𝑟);
9: compute the loss function according to Equation (12);
10: Update 𝜃 ← 𝜃 − 𝑙𝑟 · ∇𝜃 (L𝑟𝑒 (𝜃 ′) + L𝑝𝑟𝑒 (𝜃));
11: end while
12: Return 𝜃

4.3 Fine-Tuning with Meta-learning
Motivation. To ensure the robustness of TTE models throughout
the entire route, on the one hand, the model must effectively learn
and generalize driving patterns across various routes to provide
a solid foundation for understanding stable driving preferences.
On the other hand, the model must be flexible enough to adapt
to dynamically changing traffic scenarios, allowing it to adjust
predictions based on real-time data. With these goals in mind, we
implement Fine-Tuning with Meta-Learning (FTML) to enhance
both generalizability and adaptability. Overview. As shown in
Figure 4a, FTML consists of two different stages: pre-training and
fine-tuning. In the pre-training stage, the model is trained to predict
both the total route arrival time 𝑦 and the traveled time 𝑦𝑡𝑟 at
specific locations, along with their respective confidence intervals.

Work Smarter, Not Harder: Towards An Efficient and Effective En Route Travel Time Estimation Framework WWW’25, April 28-May 02, Sydney, Australia

The model parameters are updated to enable the model to learn
general driving patterns. In the fine-tuning stage, the model is
further trained to predict the travel time 𝑦𝑟𝑒 and the confidence
interval for the remaining route. This allows the model to adjust
predictions based on real-time data, enhancing its ability to adapt
to changing conditions during the route.
Learning Algorithm. The FTML procedure is depicted in Algo-
rithm 2. In pre-training stage, the model is initialized with effective
weights to learn general driving patterns for the entire route and
specific features of the traveled route. The focus is on training the
model to estimate the travel time 𝑦 and its confidence interval [𝑙, 𝑢]
for the entire route 𝑅 as well as the traveled time 𝑦𝑡𝑟 and its confi-
dence interval [𝑙𝑡𝑟 , 𝑢𝑡𝑟] for traveled route 𝑅𝑡𝑟 within the support
set D𝑠 .

𝑙, 𝑦,𝑢 = 𝑓𝜃 (𝑅), (2)

𝑙𝑡𝑟 , 𝑦𝑡𝑟 , 𝑢𝑡𝑟 = 𝑓𝜃 (𝑅𝑡𝑟) . (3)

To accurately supervise the predictions and corresponding con-
fidence intervals, we employ quantile regression [12], which is a
robust and effective method for quantifying uncertainty. Quantile
regression is distribution-free and directly optimizes the quantile
loss function for providing precise supervision on specific quantile
values without requiring any external parameters. In particular, its
basic form is illustrated as follows:

L𝑞𝑢𝑎 =I
𝑙≥𝑦𝛼

𝑙
���𝑦 − 𝑙 ��� + I

𝑙<𝑦

(
1 − 𝛼𝑙

) ���𝑦 − 𝑙 ���+
I𝑦̂≥𝑦𝛼

𝑦̂ |𝑦 − 𝑦 | + I𝑦̂<𝑦
(
1 − 𝛼 𝑦̂

)
|𝑦 − 𝑦 | + (4)

I𝑢̂≥𝑦𝛼
𝑢̂
���𝑦 − 𝑙 ��� + I𝑢̂<𝑦 (

1 − 𝛼𝑢̂
) ���𝑦 − 𝑙 ��� ,

where 𝛼 is the quantile (0 < 𝛼 < 1), I is the indicator function. This
loss function is to evaluate the relationship between 𝑙, 𝑦,𝑢 and the
label 𝑦, applying different weights based on the target quantile 𝛼 .
Specifically, the𝛼𝑙 < 0.5, the loss function imposes a greater penalty
for cases where the prediction is lower than the label (i.e., lower
bound). Conversely, when 𝛼𝑢̂ > 0.5, the loss function imposes
a greater penalty for cases where the prediction is higher than
the label (i.e., upper bound). 𝛼 𝑦̂ = 0.5, the loss function is for the
predication 𝑦.

Building on this, we define a composite loss 𝐿𝑝𝑟𝑒 for the pre-
training stage that integrates the quantile loss L𝑒𝑛 for the entire
route 𝑅 and the quantile loss L𝑡𝑟 in support set D𝑠 . To further
refine the confidence interval, we use Mean Prediction Interval
Width (MPIW) [20] to constrain the confidence interval to ensure
it remains tight and reliable throughout the route.

L𝑒𝑛 (𝜃) = L𝑞𝑢𝑎 ([𝑙, 𝑦,𝑢], 𝑦), (5)

MPIW = 𝑢𝑡𝑟 − 𝑙𝑡𝑟 , (6)

L𝑡𝑟 (𝜃) = L𝑞𝑢𝑎 ([𝑙𝑡𝑟 , 𝑦𝑡𝑟 , 𝑢𝑡𝑟], 𝑦𝑡𝑟) +MPIW. (7)

The total loss L𝑝𝑟𝑒 of the pre-training stage is given by the sum of
the two losses (lines 4-5):

L𝑝𝑟𝑒 (𝜃) = L𝑒𝑛 (𝜃) + L𝑡𝑟 (𝜃) . (8)

Then update the model parameters 𝜃 through the L𝑝𝑟𝑒 (line 6):

𝜃 ′ ← 𝜃 − 𝑙𝑟 · ∇𝜃L𝑝𝑟𝑒 (𝜃), (9)

where 𝑙𝑟 is the learning rate and 𝜃 ′ denotes the updated model pa-
rameters. By the end of this stage, the model achieves a good weight
initialization, enabling it to rapidly adapt to new tasks (i.e.,ER-TTE)
in the fine-tuning stage and make accurate predictions.

During the fine-tuning stage, the inputs for this stage include
features of both the already traveled and remaining routes which
ensure that the model can adapt to the dynamic traffic conditions
of partially traveled routes and then provide accurate ER-TTE. The
pre-trained model with parameters 𝜃 ′ is fine-tuned specifically for
prediction 𝑦𝑟𝑒 and its confidence interval [𝑙𝑟𝑒 , 𝑢𝑟𝑒] for the remain-
ing route in the query set D𝑞 . The fine-tuning quantile loss L𝑓 𝑡 for
the remaining route is calculated as follows (lines 8-9):

𝑙𝑟𝑒 , 𝑦𝑟𝑒 , 𝑢𝑟𝑒 = 𝑓𝜃 ′ (𝑅𝑟𝑒 , 𝑅𝑡𝑟), (10)

L𝑓 𝑡 (𝜃 ′) = L𝑞𝑢𝑎 ([𝑙𝑟𝑒 , 𝑦𝑟𝑒 , 𝑢𝑟𝑒], 𝑦𝑟𝑒) . (11)

The model parameters are finally updated based on the two losses
(line 10).

𝜃 ← 𝜃 − 𝑙𝑟 · ∇𝜃 (L𝑓 𝑡 (𝜃 ′) + L𝑝𝑟𝑒 (𝜃)). (12)
In summary, FTML makes the model generalize from previous

tasks (entire and traveled TTE) and swiftly adapt to new tasks
(ER-TTE) through a two-stage training process: pre-training and
fine-tuning. During pre-training, the model captures general driving
patterns for entire routes and the specific features from the traveled
route, enabling it to understand the overall dynamics of travel time
across different routes. The fine-tuning stage allows the model to
specialize in the task of ER-TTE, ensuring that it can adapt to the
specific conditions of partially traveled routes and provide accurate
predictions.

5 EXPERIMENT
In this section, we present the performance of our framework. We
evaluate its effectiveness, efficiency, and scalability by applying
several advanced TTE models and conducting ablation studies.
Additionally, we perform online tests using simulated streaming
data to validate our framework further.

5.1 Experimental Settings
Datasets and Preprocessing. We utilize two real-world taxi tra-
jectory datasets collected from the cities of Porto1, and Xian2. For
both datasets, We removed outlier data (i.e. driving distances that
were too short and too long). The processed Porto dataset con-
tains 1,011,761 routes and Xian contains 1,191,125 routesMetrics.
Similar to existing methods [3, 13], we use four metrics for per-
formance evaluation, including mean absolute percentage error
(MAPE), mean absolute error (MAE), root mean squared error
(RMSE), and satisfaction rate (SR). Specifically, SR refers to the
proportion of routes with a MAPE less than 10%, and a higher SR
indicates better performance and customer satisfaction. They are
defined as follows: SR = 1

𝑁

∑𝑁
𝑖 (|

𝑦𝑖−𝑦
𝑦 | ≤ 10%) × 100%

Implementation Details. The Adam optimizer is used with a
fixed learning rate of 1 × 10−3 and a weight decay of 1 × 10−3 as
a regularization term to prevent overfitting. We use the training
set to train the model, select the model with the best MAPE on the
1https://www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i
2https://gaia.didichuxing.com/

WWW’25, April 28-May 02, Sydney, Australia Zekai Shen et al.

validation set, and use the test set to evaluate the performance. All
experiments are implemented in Python using the Pytorch toolbox,
using an NVIDIA RTXA4000 GPU. The platform runs on an Ubuntu
20.04 operating system. Following [5], each route is divided into
two parts: 30% of the route has already been traveled and 70%
remaining route. The quantities 𝛼 are [0.1,0.5,0.9].

We compare two strategies that can improve throughput: (1)Random:
All samples are not specially processed and are first come, first
served. (2)Greedy: Since long routes are often difficult to predict,
long-distance routes are predicted first. We re-estimate samples that
could not be effectively filtered under various strategies. For sam-
ples that are successfully filtered, the prediction value is calculated
as 𝑦 − 𝑦𝑡𝑟 .
Backbone ArchitecturesWe select two groups of backbones in-
cluding different architecture and integrate them into our frame-
work. As shown in Table 2, we analyze the time complexity of
different backbone models.
1. TTE Method: (1)MLPTTE: A 16-layer multilayer perceptron
with ReLU activation function is used. The specific approach is
to estimate the travel time of each road segment separately and
sum it as the overall travel time estimate of the route. (2)WDR
[23]: a wide-deep-recurrent architecture is introduced to handle
sparse features, dense features, and road segment sequence features
respectively. (3)WDR-LC [17]:Enhances WDR by jointly model-
ing road segments and intersections. (4)ConSTGAT [7]: It is a
spatiotemporal graph neural network structure that uses graph
attention to capture spatiotemporal correlations and the contextual
information of the route.
2. ER-TTE Method: (5)SSML [6]: It is the first meta-learning model
for ER-TTE, which aims to learn meta-knowledge to quickly adapt
to users’ driving preferences. (6)MetaER-TTE [5]: A new adap-
tive meta-learning model is proposed, which generates cluster-
aware initialization parameters through soft clustering and uses
distribution-aware adaptive learning rate optimization.

5.2 Overall Effectiveness Comparison
As shown in Table 1, We analyze the effectiveness in two aspects,
e.g., Overall comparison and Model fitness.
Overall Comparison. We using different backbone models with
UGD improves averageMAPE, MAE, RMSE and SR by at least 24.3%,
17.6%, 12.6%, and 18% in on Porto dataset, and 16.7%, 10.3%, 7.5%,
and 8.9% on Xian dataset. This demonstrates the effectiveness of
UGD in identifying routes needing re-estimation, and achieving
SOTA results. In contrast, the greedy strategy performs worse due
to higher prediction errors on longer routes.
Model Fitness. The attention-based models ConSTGAT, MetaER-
TTE, and SSML perform well Because the attention mechanism
can integrate information from different segments to obtain accu-
rate predictions. The MLP-based MLPTTE model uses a pure MLP
architecture to independently process the features of each road
segment and sum them as an estimated value. Although it ignores
the association between road segments, it shows advantages in
processing independent and complex road segment features.

The RNN-based models WDR and WDR-LC have a slightly
poorer performance, which may be because each step of the RNN
is calculated based only on the current input and the hidden state

of the previous time step. Although RNN can partially integrate
historical information, its processing method may not effectively
capture the complex associations between different locations, espe-
cially when it is necessary to capture the state of the intermediate
process of the vehicle’s driving process. This causes the RNN-based
model to inaccurately estimate travel time, making it difficult to
construct an effective confidence interval.

5.3 Efficiency Comparison
We analyze the efficiency in inference time and throughput(the
number of samples that can be processed per second). As shown
in Figure 5, w/o UGD means without UGD which all samples re-
estimate. On the Xian dataset, MLPTTE, WDR, WDR-LC, ConST-
GAT, and SSML do not require model calls in 77.3%, 32.1%, 24.7%,
77.5%, and 78.1% of cases, respectively. On the Porto dataset, these
models perform 80.3%, 74.2%, 37.9%, 36.7%, 73.9%, and 70.7%, respec-
tively. We have the following observations:

(1) The experimental results demonstrate that integrating UGD
inference time and throughput by at least 1.49 times and 2.97 times,
respectively, on the Porto dataset, and by 1.2 times and 2.67 times
on the Xian dataset.

(2) Three Attention-based models and MLPTTE can filter more
samples and make greater progress. More routes need re-estimation
with two RNN-based methods, resulting in smaller improvements.
However, they improved by 1.2 and 2.67 times in inference time
and throughput, respectively.

The improvements are attributed to the ability of UGD to mini-
mize unnecessary inference operations, optimize the use of compu-
tational resources, and accelerate system response time.

5.4 Scalability Comparison
To validate the scalability of our framework, we use 20%, 40%, 60%,
and 80% of the training data and conduct detailed experimental
analysis. As shown in Figure 6, we observe the following:

(1) The performance of all methods improves with increased
training data. This is because a larger dataset encompasses a wider
range of scenarios, enabling the model to learn more effectively.

(2) Attention-based models are more stable and effective than
RNN-based models. Attention-based models can get good perfor-
mance using only 20% training data. However, RNN-based models
can only be greatly improved as data increases.

5.5 Ablation Study
To validate the effectiveness of our method, we design ablation
studys, which includes the following two parts: (1) w/o FTML:
Removing the FTML, (2) MIS: Replacing quantile loss to MIS (Mean
Interval Score) loss [24]. As shown in Table 3, we do the ablation
study on SSML.

First, performance decreases without FTML, indicating FTML
makes the model learn the general patterns and specific features to
adapt to specific tasks. Additionally, the MIS method shows a signif-
icant decrease in both effectiveness and uncertainty quantification.
This proves quantile loss not only provides accurate confidence
intervals to enhance efficiency but also improves the overall pre-
diction effectiveness.

Work Smarter, Not Harder: Towards An Efficient and Effective En Route Travel Time Estimation Framework WWW’25, April 28-May 02, Sydney, Australia

Table 1: Overall performance on Porto and Xian dataset

Method strategy Porto Xian
MAPE (%)↓ MAE (s)↓ RMSE (s)↓ SR (%)↑ MAPE (%)↓ MAE (s)↓ RMSE (s)↓ SR (%)↑

MLPTTE
Random 22.25 116.45 255.04 38.53 23.75 200.75 312.71 29.90
Greedy 23.90 122.03 258.30 36.35 28.81 217.87 309.41 25.98
UGD 16.09 91.04 214.19 47.19 18.85 170.83 275.37 35.36

WDR
Random 46.667 343.86 493.88 10.61 29.78 347.44 492.96 18.56
Greedy 40.22 240.24 359.06 20.86 36.13 370.64 475.88 16.21
UGD 20.08 111.28 236.03 36.71 20.63 193.95 327.10 32.01

WDR-LC
Random 32.69 234.09 384.21 24.34 32.72 381.16 530.64 16.18
Greedy 44.15 287.5 417.41 14.11 36.66 363.42 476.42 19.43
UGD 19.23 111.27 243.54 40.54 21.88 190.82 294.56 30.34

ConSTGAT
Random 23.24 121.40 257.38 37.24 25.024 209.19 319.02 28.52
Greedy 26.84 129.93 252.64 27.08 25.72 215.85 323.57 26.98
UGD 15.86 91.76 217.85 48.75 20.83 176.09 269.62 32.82

SSML
Random 22.92 116.21 248.36 36.54 24.39 211.95 332.44 29.26
Greedy 32.39 134.37 241.69 25.17 25.77 211.56 315.78 27.68
UGD 16.89 90.15 210.03 46.30 19.14 170.10 272.28 35.40

MetaER-TTE
Random 25.41 129.86 264.13 31.64 24.20 200.94 304.43 29.76
Greedy 32.08 145.30 254.39 19.73 27.84 256.36 379.26 21.70
UGD 16.36 95.96 223.77 44.98 19.98 180.27 281.72 32.421

0.71
4.85

2.77
2.72

4.78

3.273.58
10.01

7.16

0.97

0.43

0.95

0.796.94

4.43
3.11

1.64

4.33
4.15

8.37

7.03

1.31

0.69

1.86

26.46

7.32

7.29

7.42
8.38

6.17

5.63

2.02

2.82

25.61

29.53

25.26

7.59

5.37
7.658.67

5.49

5.74

2.84

2.06

24.67

25.25

w/o UGD

UGD

w/o UGD

UGD

(a) Inference time comparison (s) (left: Porto, right: Xian) (b) Throughput comparison (/s× 𝟏𝟎𝟒) (left: Porto, right: Xian)

28.18

29.33

MLPTTE

WDR

WDR-LC

ConSTGAT

MetaER-TTE

SSML

MLPTTE

WDR

WDR-LC

ConSTGAT

MetaER-TTE

SSML

MLPTTE

WDR

WDR-LC

ConSTGAT

MetaER-TTE

SSML

MLPTTE

WDR

WDR-LC

ConSTGAT

MetaER-TTE

SSML

Figure 5: The efficiency comparison of inference time and throughput.

20% 40% 60% 80% 100%

100

120

140

160

MAE,Porto

20% 40% 60% 80% 100%

20

25

30
MAPE(%),Porto

20% 40% 60% 80% 100%

175

200

225

250

MAE,Xian

20% 40% 60% 80% 100%

20.0

22.5

25.0

27.5

MAPE(%),Xian
WDR WDR-LC MLPTTE ConSTGAT MetaER-TTE SSML

Figure 6: MAPE & MAE vs. the Scalability.

5.6 Online Test
We conduct an online test simulation on the Xian dataset with the
framework incorporating SSML as the backbone model. For the sim-
ulation, we select 100 routes that include temporal features (such

WWW’25, April 28-May 02, Sydney, Australia Zekai Shen et al.

Table 2: Backbone complexity analysis. 𝑛 refers to the
number of segments, ℎ refer to the feature dimensions.

Method Complexity Components

MLPTTE 𝑂 (𝑛ℎ2) MLP
WDR 𝑂 (𝑛ℎ2) RNN

WDR-LC 𝑂 (𝑛ℎ2) RNN
ConSTGAT 𝑂 (𝑛2ℎ) Attention

SSML 𝑂 (𝑛2ℎ) Attention
MetaER-TTE 𝑂 (𝑛2ℎ) Attention

Table 3: Ablation study on the FTML and replace quantile
regression to MIS.

Dataset Model MAPE MAE

Porto
w/o FTML 17.58 94.43

MIS 18.46 96.88
Qua+FTML 16.89 90.15

Xian
w/o FTML 20.36 176.81

MIS 24.75 228.07
Qua+FTML 19.14 170.10

true
pred

T
ra

v
el

 T
im

e

Driving Progress
(a) Xian Oct. 2nd 15:39 2322s

true
pred

T
ra

v
el

 T
im

e

Driving Progress
(b) Xian Oct. 14th 23:06 2544s

Figure 7: Visualization of our framework in ER-TTE process. (The title of each subfigure is labeled in the form of “City, Date,
Departure time, and Travel time”.)

as weekdays/weekends) and spatial features (such as short/long
distances). To evaluate the online efficiency, we divide per route
to 𝑘 = 10 parts, based on the proportion of the route driven (10%
intervals). Before departure, the model generated confidence inter-
vals for the entire route, At each 10% interval (from 10% to 90%),
ER-TTE requests were made. Every route will have 9 queries during
the route (10%-90%). Normally, this would result in 900 requests
(9 queries per route × 100 routes). However, our framework re-
duced this to 334 requests, significantly improving efficiency and
throughput.

Figure 7 illustrates the relationship between travel time and route
completion percentage for two routes. In the left figure, only 3 initial
requests needed re-estimation when actual travel times deviated
from predicted confidence intervals, primarily due to holiday traffic
in Xian and initial acceleration phases. In contrast, the right figure,
which depicts late-night travel, did not require any re-estimations
due to stable traffic conditions. These results demonstrate that
our framework can efficiently adapt to varying traffic conditions,
initiating re-estimations only when necessary, thereby ensuring
flexibility and efficiency.

6 CONCLUSION
In this paper, we present a general framework that enhances ER-
TTE by integrating UGD and FTML. This framework achieves ef-
ficient and effective ER-TTE—a previously unexplored area. UGD

plays a pivotal role by providing confidence intervals that guide the
system in deciding whether re-estimation is necessary, optimizing
the use of computational resources. FTML significantly enhances
the effectiveness by learning the general drive patterns and adapting
to specific tasks. This framework not only advances the state-of-
the-art in ER-TTE but also offers a practical and scalable solution
for improving system efficiency and effectiveness.

REFERENCES
[1] [n. d.]. DiDi Announces Results for Fourth Quarter and Full Year 2023. https:

//ir.didiglobal.com/financials/quarterly-results/ (2023, Dec 31).
[2] Moloud Abdar, Farhad Pourpanah, Sadiq Hussain, Dana Rezazadegan, Li Liu, Mo-

hammad Ghavamzadeh, Paul Fieguth, Xiaochun Cao, Abbas Khosravi, U Rajendra
Acharya, et al. 2021. A review of uncertainty quantification in deep learning:
Techniques, applications and challenges. Information fusion 76 (2021), 243–297.

[3] Zebin Chen, Xiaolin Xiao, Yue-Jiao Gong, Jun Fang, Nan Ma, Hua Chai, and
Zhiguang Cao. 2022. Interpreting trajectories from multiple views: A hierarchical
self-attention network for estimating the time of arrival. In Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 2771–2779.

[4] Austin Derrow-Pinion, Jennifer She, David Wong, Oliver Lange, Todd Hester,
Luis Perez, Marc Nunkesser, Seongjae Lee, Xueying Guo, Brett Wiltshire, et al.
2021. Eta prediction with graph neural networks in google maps. In Proceedings
of the 30th ACM international conference on information & knowledge management.
3767–3776.

[5] Yu Fan, Jiajie Xu, Rui Zhou, Jianxin Li, Kai Zheng, Lu Chen, and Chengfei Liu.
2022. MetaER-TTE: An Adaptive Meta-learning Model for En Route Travel Time
Estimation.. In IJCAI. 2023–2029.

[6] Xiaomin Fang, Jizhou Huang, FanWang, Lihang Liu, Yibo Sun, and HaifengWang.
2021. Ssml: Self-supervised meta-learner for en route travel time estimation at
baidu maps. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining. 2840–2848.

https://ir.didiglobal.com/financials/quarterly-results/
https://ir.didiglobal.com/financials/quarterly-results/

Work Smarter, Not Harder: Towards An Efficient and Effective En Route Travel Time Estimation Framework WWW’25, April 28-May 02, Sydney, Australia

[7] Xiaomin Fang, Jizhou Huang, Fan Wang, Lingke Zeng, Haijin Liang, and Haifeng
Wang. 2020. Constgat: Contextual spatial-temporal graph attention network for
travel time estimation at baidu maps. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 2697–2705.

[8] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-
learning for fast adaptation of deep networks. In International conference on
machine learning. PMLR, 1126–1135.

[9] Yarin Gal and Zoubin Ghahramani. 2016. Dropout as a bayesian approximation:
Representing model uncertainty in deep learning. In international conference on
machine learning. PMLR, 1050–1059.

[10] Shengnan Guo, Youfang Lin, Letian Gong, Chenyu Wang, Zeyu Zhou, Zekai
Shen, Yiheng Huang, and Huaiyu Wan. 2023. Self-supervised spatial-temporal
bottleneck attentive network for efficient long-term traffic forecasting. In 2023
IEEE 39th International Conference on Data Engineering (ICDE). IEEE, 1585–1596.

[11] Tsuyoshi Idé and Masashi Sugiyama. 2011. Trajectory regression on road net-
works. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 25.
203–208.

[12] Roger Koenker and Gilbert Bassett Jr. 1978. Regression quantiles. Econometrica:
journal of the Econometric Society (1978), 33–50.

[13] Wuwei Lan, Yanyan Xu, and Bin Zhao. 2019. Travel time estimation without road
networks: an urban morphological layout representation approach. In Proceedings
of the 28th International Joint Conference on Artificial Intelligence. 1772–1778.

[14] Xiucheng Li, Gao Cong, Aixin Sun, and Yun Cheng. 2019. Learning travel time
distributions with deep generative model. In The World Wide Web Conference.
1017–1027.

[15] Yaguang Li, Kun Fu, Zheng Wang, Cyrus Shahabi, Jieping Ye, and Yan Liu. 2018.
Multi-task representation learning for travel time estimation. In Proceedings of
the 24th ACM SIGKDD international conference on knowledge discovery & data
mining. 1695–1704.

[16] Yan Lin, Huaiyu Wan, Jilin Hu, Shengnan Guo, Bin Yang, Youfang Lin, and
Christian S Jensen. 2023. Origin-destination travel time oracle for map-based
services. Proceedings of the ACM on Management of Data 1, 3 (2023), 1–27.

[17] Xiaowei Mao, Tianyue Cai, Wenchuang Peng, and Huaiyu Wan. 2021. Estimated
time of arrival prediction via modeling the spatial-temporal interactions between
links and crosses. In Proceedings of the 29th International Conference on Advances
in Geographic Information Systems. 658–661.

[18] Xiaowei Mao, Huaiyu Wan, Haomin Wen, Fan Wu, Jianbin Zheng, Yuting Qiang,
Shengnan Guo, Lixia Wu, Haoyuan Hu, and Youfang Lin. 2023. GMDNet: A
graph-based mixture density network for estimating packages’ multimodal travel
time distribution. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 37. 4561–4568.

[19] Xiaowei Mao, Haomin Wen, Hengrui Zhang, Huaiyu Wan, Lixia Wu, Jianbin
Zheng, Haoyuan Hu, and Youfang Lin. 2023. Drl4route: A deep reinforcement
learning framework for pick-up and delivery route prediction. In Proceedings
of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.
4628–4637.

[20] Tim Pearce, Alexandra Brintrup, Mohamed Zaki, and Andy Neely. 2018. High-
quality prediction intervals for deep learning: A distribution-free, ensembled
approach. In International conference on machine learning. PMLR, 4075–4084.

[21] Hao Wang and Dit-Yan Yeung. 2016. Towards Bayesian deep learning: A frame-
work and some existing methods. IEEE Transactions on Knowledge and Data
Engineering 28, 12 (2016), 3395–3408.

[22] Yilun Wang, Yu Zheng, and Yexiang Xue. 2014. Travel time estimation of a path
using sparse trajectories. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. 25–34.

[23] Zheng Wang, Kun Fu, and Jieping Ye. 2018. Learning to estimate the travel time.
In Proceedings of the 24th ACM SIGKDD international conference on knowledge
discovery & data mining. 858–866.

[24] Dongxia Wu, Liyao Gao, Matteo Chinazzi, Xinyue Xiong, Alessandro Vespignani,
Yi-An Ma, and Rose Yu. 2021. Quantifying uncertainty in deep spatiotemporal
forecasting. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining. 1841–1851.

[25] Haitao Yuan, Gao Cong, and Guoliang Li. 2024. Nuhuo: An Effective Estimation
Model for Traffic Speed Histogram Imputation on A Road Network. Proceedings
of the VLDB Endowment 17, 7 (2024), 1605–1617.

[26] Haitao Yuan and Guoliang Li. 2021. A survey of traffic prediction: from spatio-
temporal data to intelligent transportation. Data Science and Engineering 6, 1
(2021), 63–85.

[27] Haitao Yuan, Guoliang Li, and Zhifeng Bao. 2022. Route travel time estimation on
a road network revisited: Heterogeneity, proximity, periodicity and dynamicity.
Proceedings of the VLDB Endowment 16, 3 (2022), 393–405.

[28] Haitao Yuan, Guoliang Li, Zhifeng Bao, and Ling Feng. 2020. Effective travel
time estimation: When historical trajectories over road networks matter. In
Proceedings of the 2020 acm sigmod international conference on management of
data. 2135–2149.

[29] Haitao Yuan, Sai Wang, Zhifeng Bao, and Shangguang Wang. 2023. Automatic
road extraction with multi-source data revisited: completeness, smoothness and
discrimination. Proceedings of the VLDB Endowment 16, 11 (2023), 3004–3017.

[30] Yuxiang Zeng, Yongxin Tong, Yuguang Song, and Lei Chen. 2020. The simpler
the better: An indexing approach for shared-route planning queries. Proceedings
of the VLDB Endowment 13, 13 (2020), 3517–3530.

	Abstract
	1 Introduction
	2 RELATED WORK
	2.1 Travel Time Estimation
	2.2 Uncertainty Quantification

	3 PRELIMINARY
	3.1 En Route Travel Time Estimation
	3.2 Meta-Learning in ER-TTE

	4 METHODOLOGY
	4.1 Overview
	4.2 Uncertainty-Guided Decision Mechanism
	4.3 Fine-Tuning with Meta-learning

	5 Experiment
	5.1 Experimental Settings
	5.2 Overall Effectiveness Comparison
	5.3 Efficiency Comparison
	5.4 Scalability Comparison
	5.5 Ablation Study
	5.6 Online Test

	6 Conclusion
	References

