
Fine-grained Temporal Learning in Traffic Flow Forecasting: The
Power of Intraday Patterns

Shen Zhou
zhoushen@njnu.edu.cn

Nanjing Normal University
Nanjing, Jiangsu, China

Longwei Li
lilongwei@njnu.edu.cn

Nanjing Normal University
Nanjing, Jiangsu, China

Yehua Sheng∗
shengyehua@njnu.edu.cn
Nanjing Normal University
Nanjing, Jiangsu, China

Abstract
Traffic flow forecasting is a core technology in Intelligent Trans-
portation Systems (ITS). The fundamental challenge lies in effec-
tively modeling the complex spatio-temporal dependencies in traffic
data. Recent studies have shown that concise deep learning architec-
tures with effective feature representations can achieve comparable
performance to complexmodels. However, existingmethods primar-
ily rely on static temporal embeddings, making it difficult to fully
capture the dynamic patterns of traffic flow variations throughout
the day, which limits prediction accuracy. To address this issue, we
propose a novel spatio-temporal modeling approach (ST-FTL) that
focuses on fine-grained temporal learning to capture the dynamic
patterns of traffic flow variations throughout the day. Specifically,
we design a new fine-grained intraday pattern encoder that enables
adaptive modeling of intraday temporal patterns through dynamic
weight matrices. This encoder adopts a multi-level cascaded struc-
ture, enhancing feature expressiveness while maintaining linear
computational complexity. Experiments on four widely-used public
traffic datasets (PEMS03, PEMS04, PEMS07, and PEMS08) demon-
strate that our proposed model outperforms existing baseline meth-
ods while maintaining significantly lower computational cost than
existing attention-based methods.

CCS Concepts
• Information systems→ Data mining.

Keywords
traffic flow forecasting, spatio-temporal modeling, intraday pattern
learning, dynamic temporal feature, deep learning

ACM Reference Format:
Shen Zhou, Longwei Li, and Yehua Sheng. 2025. Fine-grained Temporal
Learning in Traffic Flow Forecasting: The Power of Intraday Patterns. In
WEBST ’25: International Workshop on Spatio-Temporal Data Mining from
the Web, April 28–29, 2025, Sydney, Australia. ACM, New York, NY, USA,
5 pages. https://doi.org/10.1145/XXXXXX.XXXXXX

∗Corresponding author: Yehua Sheng (shengyehua@njnu.edu.cn)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WEBST’25, Sydney, Australia
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/2025/04
https://doi.org/10.1145/XXXXXX.XXXXXX

1 Introduction
Traffic flow forecasting, as a core component of Intelligent Trans-
portation Systems (ITS), plays a crucial role in urban planning,
traffic management, and mobility services. Accurate traffic flow
forecasting can help alleviate traffic congestion, optimize route
planning, and improve transportation efficiency [1, 5, 29]. However,
due to the complexity and dynamics of transportation systems,
achieving accurate traffic flow forecasting remains a significant
challenge [3, 4, 12, 24].

Recent years have witnessed remarkable progress in deep learn-
ing approaches for traffic flow forecasting. As research deepens, the
evolution of forecasting models has gone through several signifi-
cant stages: Early recurrent neural networks achieved success in
temporal feature extraction due to their sequence modeling capabil-
ities [7, 17, 23, 26]; The introduction of spatio-temporal Graph Neu-
ral Networks (STGNNs) further enhanced the modeling of spatial
dependencies [2, 14, 18, 21, 22, 25], though their complex structures
and high computational overhead limited practical applications;
Recently emerging Transformer architectures have provided new in-
sights for spatio-temporal feature modeling through self-attention
mechanisms [11, 15, 16, 27, 28]. However, these methods often
pursue performance improvements through increasingly complex
model architectures, potentially compromising their practicality.
This trend of “more complex models are better” raises a critical
question: Is there a more concise yet efficient solution?

Recently, Shao et al. proposed the spatio-temporal Identity (STID)
method, which achieved comparable performance to complex mod-
els using only Multi-Layer Perceptrons (MLPs) by introducing spa-
tial and temporal embeddings [19]. This finding suggests that effec-
tive feature representations might be more crucial than complex
model architectures. However, STID relies on static temporal em-
beddings, making it difficult to fully capture the dynamic patterns
of traffic flow variations throughout the day, which limits predic-
tion accuracy. As shown in Figure 1, by comparing the daily traffic
flow variations of typical nodes in PEMS04, PEMS07, and PEMS08
datasets, we can observe distinct temporal dynamic characteristics
in traffic data. The flow volumes vary significantly across differ-
ent time periods. These complex temporal variation patterns have
a crucial impact on prediction accuracy and require fine-grained
modeling approaches.

Based on this observation, we propose a novel spatio-temporal
modeling approach (ST-FTL) that focuses on fine-grained temporal
learning to capture the dynamic patterns of traffic flow variations
throughout the day. Building upon STID’s effective spatial-temporal
identity framework, we enhance the temporal modeling capability
through dedicated intraday pattern learning mechanisms. The main
contributions of this paper are as follows:

https://doi.org/10.1145/XXXXXX.XXXXXX
https://doi.org/10.1145/XXXXXX.XXXXXX

WEBST’25, April 28–29, 2025, Sydney, Australia Zhou et al.

0 48 96 144 192 240

Time Steps

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 F
lo

w

PEMS04
PEMS07
PEMS08

Figure 1: Daily traffic flow variations of typical nodes across
different datasets. The x-axis represents time steps (5-minute
intervals, 288 steps in total), and the y-axis represents nor-
malized traffic flow.

• We propose an Intraday Pattern Block (IPB), a novel temporal
learning module that enables adaptive modeling of intraday
temporal patterns through dynamic weight matrices.

• We design a multi-level cascaded Intraday Pattern Encoder
(IPE) based on the combination of MLP layers and IPB. This
design achieves effective fine-grained temporal learning
while maintaining model simplicity.

• We develop ST-FTL by integrating spatio-temporal identity
embeddings with the proposed temporal learning mecha-
nisms. Extensive experiments on four real-world datasets
demonstrate that our model outperforms state-of-the-art
methods while maintaining low computational overhead.

2 Methodology
2.1 Problem Definition
Consider a traffic network consisting of 𝑁 nodes, where each node
monitors and records traffic states in real-time. We denote the
traffic flow data of 𝑁 nodes over 𝑇 discrete time steps as tensor
X ∈ R𝑇×𝑁 . The goal of traffic flow forecasting is to construct a
mapping function 𝑓 that utilizes observations from the past 𝑃 time
steps X𝑖𝑛𝑝𝑢𝑡 ∈ R𝑃×𝑁 to predict traffic flow for the future 𝐹 time
steps Y ∈ R𝐹×𝑁 .

Following STID’s design, we incorporate two temporal semantic
features in the input: Time in Day (TiD) andDay inWeek (DiW) [19].
For a given input data X𝑖𝑛𝑝𝑢𝑡 , the corresponding temporal fea-
tures can be represented as two normalized vectors T𝑡𝑖𝑑 ∈ R𝑃 and
T𝑑𝑖𝑤 ∈ R𝑃 , where the 𝑝-th element corresponds to the temporal
information at time step 𝑡 −𝑃 +𝑝 . Specifically, each element in T𝑡𝑖𝑑
represents the relative temporal position within a day, while each
element in T𝑑𝑖𝑤 represents the relative day position within a week.
For example, with a 5-minute sampling interval resulting in 288
time steps per day, the relative position of a time step within a day
can be represented as 𝑘/288, where 𝑘 ∈ {0, 1, . . . , 287}; similarly,
the relative position of a day within a week can be represented as
𝑑/7, where 𝑑 ∈ {0, 1, . . . , 6}.

Therefore, the traffic flow forecasting task can be formalized as
the following mapping problem:

Y = 𝑓 (X𝑖𝑛𝑝𝑢𝑡 ,T𝑡𝑖𝑑 ,T𝑑𝑖𝑤) (1)

2.2 Model Architecture
ST-FTL is designed to effectively capture spatio-temporal dependen-
cies in traffic flow data. Themodel consists of three key components:
an embedding module, an IPE, and a regression layer. Figure 2 il-
lustrates the overall architecture of the model.

2.2.1 Embedding Module. The model builds upon the effective em-
bedding strategy adopted by STID [19]. The embedding module
aims to transform raw input data into high-dimensional representa-
tions while incorporating spatial and temporal identity information.
For time series 𝑖 at time step 𝑡 , given input X𝑖

𝑡−𝑃+1:𝑡 ∈ R𝑃 , we first
transform it into an initial embedding H𝑖

𝑡 ∈ R𝐷 through a fully
connected layer, where 𝐷 is the hidden dimension:

H𝑖
𝑡 = FC𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 (X𝑖

𝑡−𝑃+1:𝑡) (2)

To capture spatial and temporal identity information, we define
three learnable embedding matrices: spatial identity matrix E ∈
R𝑁×𝐷 , TiD identity matrix E𝑡𝑖𝑑 ∈ R𝑁𝑑×𝐷 , and DiW identity matrix
E𝑑𝑖𝑤 ∈ R𝑁𝑤×𝐷 . Here, 𝑁 is the number of time series, 𝑁𝑑 is the
number of time steps in a day, and 𝑁𝑤 = 7 represents the number
of days in a week.

Following STID’s design, we use the temporal index of the
last time step in the input sequence as the temporal information
for the entire time window [19]. Specifically, for input sequence
X𝑖
𝑡−𝑃+1:𝑡 ∈ R𝑃 , we extract the last element of its corresponding

temporal information vectors T𝑡𝑖𝑑 ∈ R𝑃 and T𝑑𝑖𝑤 ∈ R𝑃 :

T𝑡
𝑡𝑖𝑑

= T𝑡𝑖𝑑 [𝑃], T𝑡
𝑑𝑖𝑤

= T𝑑𝑖𝑤 [𝑃] (3)

Then, these temporal information are transformed into corre-
sponding indices through linear mapping for extracting temporal
features from the temporal embedding matrices:

E𝑡
𝑡𝑖𝑑

= E𝑡𝑖𝑑 [T𝑡𝑡𝑖𝑑 · 𝑁𝑑], E𝑡
𝑑𝑖𝑤

= E𝑑𝑖𝑤 [T𝑡
𝑑𝑖𝑤

· 𝑁𝑤] (4)

For spatial embedding, we extract the corresponding embedding
vector E𝑖 = E[𝑖] from the spatial identity matrix for each node.
Finally, by concatenating the time series embedding, spatial iden-
tity embedding, and temporal identity embeddings, we obtain the
comprehensive representation for node 𝑖 at time step 𝑡 :

Z𝑖𝑡 = [H𝑖
𝑡 ;E

𝑖 ;E𝑡
𝑡𝑖𝑑

;E𝑡
𝑑𝑖𝑤

] ∈ R4𝐷 (5)

2.2.2 Intraday Pattern Encoder. The IPE serves as a novel deep
learning architecture designed to effectively enhance dynamic mod-
eling of intraday temporal patterns. The encoder extracts and re-
inforces temporal features through 𝐿 cascaded layers, where each
layer contains two core components: an MLP for feature extraction
and an IPB for dynamic modeling of intraday temporal patterns.

Given the output Z𝑖𝑡 ∈ R4𝐷 from the embedding module, the en-
coder extracts deep features through layer-by-layer processing. For
the 𝑙-th layer, the feature transformation process can be formalized
as:

(Z𝑖𝑡)𝑙+1 = IPB𝑙 (MLP𝑙 ((Z𝑖𝑡)𝑙),T𝑡𝑡𝑖𝑑) (6)
where the MLP adopts a residual structure [9, 10]:

MLP𝑙 ((Z𝑖𝑡)𝑙) = FC𝑙
2
(
Dropout

(
GELU

(
FC𝑙

1 ((Z𝑖𝑡)𝑙)
)))

+ (Z𝑖𝑡)𝑙 (7)

In each encoding layer, we design a dedicated Intraday Pattern
Block that enables adaptive modeling of intraday temporal patterns
through dynamic weight matrices. Specifically, for the 𝑙-th layer,
we define learnable parameter matrix W𝑙

𝑡𝑖𝑑
∈ R𝑁𝑑×4𝐷×4𝐷 and

Fine-grained Temporal Learning in Traffic Flow Forecasting: The Power of Intraday Patterns WEBST’25, April 28–29, 2025, Sydney, Australia

Input Embedding
Layer

Concat

E���
�

MLP
Layer

IntradayPattern
Block+ Regression

Layer

E���
� E�

Embedding Module

Concat Concat +

L × IntradayPatternEncoder

Output

Figure 2: Architecture of the ST-FTL model. The model comprises three main components: (1) an embedding module that
integrates spatial embeddings, TiD embeddings, and DiW embeddings; (2) 𝐿 layers of IPE, each containing an MLP layer and an
IPB with residual connections; (3) a regression layer for final prediction.

corresponding bias vector b𝑙
𝑡𝑖𝑑

∈ R𝑁𝑑×4𝐷 . This design enables
each layer to independently learn temporal dynamic features at
different levels of abstraction.

Given the temporal index, the block first performs dynamic
feature transformation:

X𝑙
𝑡𝑖𝑑

= LayerNorm(W𝑙
𝑡𝑖𝑑

[T𝑡
𝑡𝑖𝑑

] (Z𝑖𝑡)𝑙 + b𝑙
𝑡𝑖𝑑

[T𝑡
𝑡𝑖𝑑

]) (8)

Then, through nonlinear transformation and residual connec-
tion [9, 10], the output of this layer is obtained:

(Z𝑖𝑡)𝑙+1 = Dropout(GELU(X𝑙
𝑡𝑖𝑑

)) + (Z𝑖𝑡)𝑙 (9)

2.2.3 Regression Layer andModel Training. After processing through
𝐿 layers of the intraday pattern encoder, the learned features need
to be mapped to the prediction space. To this end, we design a
fully connected regression layer that transforms the final feature
representation (Z𝑖𝑡)𝐿 ∈ R4𝐷 into predictions for the future 𝐹 time
steps:

Ŷ𝑖𝑡+1:𝑡+𝐹 = FC𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 ((Z𝑖𝑡)𝐿) (10)
where Ŷ𝑖

𝑡+1:𝑡+𝐹 ∈ R𝐹 represents the model’s predictions for future
time series.

To evaluate prediction accuracy and guide model training, we
adopt Mean Absolute Error (MAE) as the loss function:

L(Ŷ,Y) = 1
𝑁𝐹

𝑁∑︁
𝑖=1

𝐹∑︁
𝑗=1

|Ŷ𝑖𝑗 − Y𝑖𝑗 | (11)

Themodel is trained using backpropagation and gradient descent
methods by minimizing the loss functionL to optimize all learnable
parameters.

3 Experiments
3.1 Experimental Setup
Datasets.We evaluate ST-FTL on four widely-used public traffic
flow datasets: PEMS03, PEMS04, PEMS07, and PEMS08, which are
collected from the California Transportation Performance Measure-
ment System (PeMS) with 5-minute sampling intervals [20]. The
detailed statistics of these datasets are shown in Table 1. All datasets
are preprocessed using Z-Score normalization.
Implementation Details. The experiments are conducted on an
NVIDIA RTX 3090 GPU. Following STAEformer [15], we divide
each dataset into training, validation, and test sets with a ratio of
6:2:2. The model takes 12 historical time steps (one hour) as input to
predict the next 12 time steps. We evaluate the model performance
using MAE, RMSE, and MAPE metrics.
Model Configurations.We employ a 3-layer IPE with a hidden
dimension of 32. For training, we use the Adam optimizer [13] with

Table 1: Dataset Statistics

Dataset #Nodes #Timesteps Sample Rate Time Span

PEMS03 358 26,209 5min 05/2012-07/2012
PEMS04 307 16,992 5min 01/2018-02/2018
PEMS07 883 28,224 5min 05/2017-08/2017
PEMS08 170 17,856 5min 07/2016-08/2016

an initial learning rate of 0.002 and weight decay of 0.0001. The
learning rate follows a multi-step decay strategy, reducing by 50%
at epochs 1, 25, 50, 75, 100, and 125. The batch size is set to 32, and
the model is trained for 150 epochs.
Baselines. We compare our method with several representative
baseline models, including: (1) time series prediction model HI [6];
(2) GNN-based models DCRNN [14], STGCN [25], GWNET [22],
AGCRN [2], GTS [18], and MTGNN [21]; (3) Transformer-based
models PDFormer [11] and STAEformer [15]; (4) other enhance-
ment methods STNorm [8] and STID [19]. The performance of
baseline methods is directly cited from STAEformer [15].

3.2 Performance Evaluation
Following mainstream evaluation practices, we systematically eval-
uate the average performance of all models across 12 prediction
time steps. Table 2 presents the performance comparison between
ST-FTL and baseline models on four public datasets. The best results
are shown in bold, while the second-best results are underlined.

The experimental results demonstrate that ST-FTL outperforms
existing baseline models across different datasets. On PEMS03 and
PEMS04 datasets, ST-FTL achieves leading performance on key
metrics. On PEMS07 dataset, ST-FTL’s advantages are more pro-
nounced, achieving the best results across all evaluation metrics.
The consistent performance on PEMS08 dataset further validates
the model’s robustness and generalization ability.

3.3 Efficiency Analysis
To comprehensively evaluate the practicality of ST-FTL, we analyze
its computational efficiency compared with other models. Table 3
shows the training time comparison among ST-FTL, the current
best-performing STAEformer, and the baseline STID model across
different datasets. All experiments are conducted under identical
hardware conditions (NVIDIA RTX 3090 GPU).

The results show that ST-FTL maintains moderate computa-
tional cost while achieving competitive prediction performance.
On PEMS07 dataset, ST-FTL requires only 8.9% of STAEformer’s

WEBST’25, April 28–29, 2025, Sydney, Australia Zhou et al.

Table 2: Performance comparison with baseline models on PEMS03, PEMS04, PEMS07, and PEMS08 datasets. The evaluation
metrics include MAE, RMSE, and MAPE. Best results are shown in bold.

Dataset PEMS03 PEMS04 PEMS07 PEMS08

Metric MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

HI 32.62 49.89 30.60% 42.35 61.66 29.92% 49.03 71.18 22.75% 36.66 50.45 21.63%

GWNet 14.59 25.24 15.52% 18.53 29.92 12.89% 20.47 33.47 8.61% 14.40 23.39 9.21%
DCRNN 15.54 27.18 15.62% 19.63 31.26 13.59% 21.16 34.14 9.02% 15.22 24.17 10.21%
AGCRN 15.24 26.65 15.89% 19.38 31.25 13.40% 20.57 34.40 8.74% 15.32 24.41 10.03%
STGCN 15.83 27.51 16.13% 19.57 31.38 13.44% 21.74 35.27 9.24% 16.08 25.39 10.60%
MTGNN 14.85 25.23 14.55% 19.17 31.70 13.37% 20.89 34.06 9.00% 15.18 24.24 10.20%
GTS 15.41 26.15 15.39% 20.96 32.95 14.66% 22.15 35.10 9.38% 16.49 26.08 10.54%

STNorm 15.32 25.93 14.37% 18.96 30.98 12.69% 20.50 34.66 8.75% 15.41 24.77 9.76%
STID 15.33 27.40 16.40% 18.38 29.95 12.04% 19.61 32.79 8.30% 14.21 23.28 9.27%

PDFormer 14.94 25.39 15.82% 18.36 30.03 12.00% 19.97 32.95 8.55% 13.58 23.41 9.05%
STAEformer 15.35 27.55 15.18% 18.22 30.18 11.98% 19.14 32.60 8.01% 13.46 23.25 8.88%

ST-FTL 14.73 24.39 15.48% 18.09 29.77 12.19% 18.82 32.14 7.88% 13.17 22.99 8.71%

Table 3: Training Time per Epoch (seconds) for Different
Models across Datasets

Dataset PEMS03 PEMS04 PEMS07 PEMS08

STAEformer 151.61 85.00 531.40 49.13
STID 4.12 2.35 9.22 2.05
ST-FTL 18.88 10.71 47.03 5.80

training time. While ST-FTL introduces additional computations
compared to STID due to its intraday pattern learning compo-
nents, it maintains significantly lower computational overhead
than attention-based methods.

The computational efficiency of ST-FTL primarily benefits from
two aspects: first, it inherits STID’s concise architectural design;
second, IPB achieves adaptive modeling of intraday temporal pat-
terns with minimal computational overhead through its dynamic
weight matrices.

4 Conclusion
This paper proposes ST-FTL, a traffic flow forecasting model fo-
cusing on fine-grained temporal learning. The model introduces
a novel IPB that achieves adaptive modeling of intraday temporal
patterns through dynamic weight matrices. Based on this module,
the model employs a multi-level cascaded encoder structure (IPE)
for deep feature extraction.

Experiments on multiple real-world traffic datasets demonstrate
the effectiveness of ST-FTL. The model achieves competitive predic-
tion performance while maintaining a concise architecture design.

The significance of this research lies in revealing the importance
of fine-grained temporal learning in traffic flow forecasting, pro-
viding new insights for model design. Future research directions
include extending this approach to other spatio-temporal prediction
tasks.

References
[1] Md Ashifuddin Mondal and Zeenat Rehena. 2019. Intelligent Traffic Congestion

Classification System Using Artificial Neural Network. In Companion proceedings
of the 2019 world wide web conference. 110–116.

[2] Lei Bai, Lina Yao, Can Li, Xianzhi Wang, and Can Wang. 2020. Adaptive Graph
Convolutional Recurrent Network for Traffic Forecasting. In Advances in Neural
Information Processing Systems, Vol. 33. 17804–17815.

[3] Azzedine Boukerche, Yanjie Tao, and Peng Sun. 2020. Artificial Intelligence-Based
Vehicular Traffic Flow Prediction Methods for Supporting Intelligent Transporta-
tion Systems. Computer Networks 182 (Dec. 2020), 107484.

[4] Azzedine Boukerche and Jiahao Wang. 2020. Machine Learning-based Traffic
Prediction Models for Intelligent Transportation Systems. Computer Networks
181 (Nov. 2020), 107530.

[5] Zhi (Aaron) Cheng, Min-Seok Pang, and Paul A. Pavlou. 2020. Mitigating Traffic
Congestion: The Role of Intelligent Transportation Systems. Information Systems
Research 31, 3 (Sept. 2020), 653–674.

[6] Yue Cui, Jiandong Xie, and Kai Zheng. 2021. Historical Inertia: A Neglected but
Powerful Baseline for Long Sequence Time-series Forecasting. In Proceedings of
the 30th ACM international conference on information & knowledge management.
2965–2969.

[7] Zhiyong Cui, Ruimin Ke, Ziyuan Pu, and YinhaiWang. 2020. Stacked Bidirectional
and Unidirectional LSTM Recurrent Neural Network for Forecasting Network-
Wide Traffic State with Missing Values. Transportation Research Part C: Emerging
Technologies 118 (Sept. 2020), 102674.

[8] Jinliang Deng, Xiusi Chen, Renhe Jiang, Xuan Song, and Ivor W. Tsang. 2021.
ST-Norm: Spatial and Temporal Normalization for Multi-variate Time Series
Forecasting. In Proceedings of the 27th ACM SIGKDD conference on knowledge
discovery & data mining. 269–278.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[10] Dan Hendrycks and Kevin Gimpel. 2023. Gaussian Error Linear Units (GELUs).
arXiv:1606.08415

[11] Jiawei Jiang, Chengkai Han, Wayne Xin Zhao, and Jingyuan Wang. 2023.
PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction. In Proceedings of the AAAI conference on artificial intelli-
gence, Vol. 37. 4365–4373.

[12] Sepideh Kaffash, An Truong Nguyen, and Joe Zhu. 2021. Big Data Algorithms and
Applications in Intelligent Transportation System: A Review and Bibliometric
Analysis. International Journal of Production Economics 231 (Jan. 2021), 107868.

[13] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In International Conference on Learning Representations.

[14] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. 2018. Diffusion Convolutional
Recurrent Neural Network: Data-Driven Traffic Forecasting. In International
Conference on Learning Representations.

[15] Hangchen Liu, Zheng Dong, Renhe Jiang, Jiewen Deng, Jinliang Deng, Quan-
jun Chen, and Xuan Song. 2023. Spatio-Temporal Adaptive Embedding Makes
Vanilla Transformer SOTA for Traffic Forecasting. In Proceedings of the 32nd ACM

https://arxiv.org/abs/1606.08415

Fine-grained Temporal Learning in Traffic Flow Forecasting: The Power of Intraday Patterns WEBST’25, April 28–29, 2025, Sydney, Australia

international conference on information and knowledge management. 4125–4129.
[16] Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X. Liu, and

Schahram Dustdar. 2022. Pyraformer: Low-Complexity Pyramidal Attention for
Long-Range Time Series Modeling and Forecasting. In International Conference
on Learning Representations.

[17] Zhongjian Lv, Jiajie Xu, Kai Zheng, Hongzhi Yin, Pengpeng Zhao, and Xiaofang
Zhou. 2018. LC-RNN: A Deep Learning Model for Traffic Speed Prediction. In
IJCAI. 3470–3476.

[18] Chao Shang, Jie Chen, and Jinbo Bi. 2021. Discrete Graph Structure Learning
for Forecasting Multiple Time Series. In International Conference on Learning
Representations.

[19] Zezhi Shao, Zhao Zhang, Fei Wang, Wei Wei, and Yongjun Xu. 2022. Spatial-
Temporal Identity: A Simple yet Effective Baseline for Multivariate Time Series
Forecasting. In Proceedings of the 31st ACM International Conference on Informa-
tion & Knowledge Management. 4454–4458.

[20] Chao Song, Youfang Lin, Shengnan Guo, and HuaiyuWan. 2020. Spatial-Temporal
Synchronous Graph Convolutional Networks: A New Framework for Spatial-
Temporal Network Data Forecasting. In Proceedings of the AAAI conference on
artificial intelligence, Vol. 34. 914–921.

[21] ZonghanWu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and Chengqi
Zhang. 2020. Connecting the Dots: Multivariate Time Series Forecasting with
Graph Neural Networks. In Proceedings of the 26th ACM SIGKDD international
conference on knowledge discovery & data mining. 753–763.

[22] Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. 2019.
Graph Wavenet for Deep Spatial-Temporal Graph Modeling. In Proceedings of the
28th International Joint Conference on Artificial Intelligence. AAAI Press, 1907–
1913.

[23] Bailin Yang, Shulin Sun, Jianyuan Li, Xianxuan Lin, and Yan Tian. 2019. Traffic
Flow Prediction Using LSTM with Feature Enhancement. Neurocomputing 332
(March 2019), 320–327.

[24] Xueyan Yin, Genze Wu, Jinze Wei, Yanming Shen, Heng Qi, and Baocai Yin. 2022.
Deep Learning on Traffic Prediction: Methods, Analysis, and Future Directions.
IEEE Transactions on Intelligent Transportation Systems 23, 6 (June 2022), 4927–
4943.

[25] Bing Yu, Haoteng Yin, and Zhanxing Zhu. 2018. Spatio-Temporal Graph Con-
volutional Networks: A Deep Learning Framework for Traffic Forecasting. In
Proceedings of the 27th International Joint Conference on Artificial Intelligence.
3634–3640.

[26] Haifeng Zheng, Feng Lin, Xinxin Feng, and Youjia Chen. 2021. A Hybrid Deep
Learning Model With Attention-Based Conv-LSTM Networks for Short-Term
Traffic Flow Prediction. IEEE Transactions on Intelligent Transportation Systems
22, 11 (Nov. 2021), 6910–6920.

[27] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong,
and Wancai Zhang. 2021. Informer: Beyond Efficient Transformer for Long
Sequence Time-Series Forecasting. In Proceedings of the AAAI conference on
artificial intelligence, Vol. 35. 11106–11115.

[28] Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. 2022.
FEDformer: Frequency enhanced decomposed transformer for long-term series
forecasting. In International conference on machine learning. 27268–27286.

[29] Li Zhu, Fei Richard Yu, Yige Wang, Bin Ning, and Tao Tang. 2019. Big Data
Analytics in Intelligent Transportation Systems: A Survey. IEEE Transactions on
Intelligent Transportation Systems 20, 1 (Jan. 2019), 383–398.

	Abstract
	1 Introduction
	2 Methodology
	2.1 Problem Definition
	2.2 Model Architecture

	3 Experiments
	3.1 Experimental Setup
	3.2 Performance Evaluation
	3.3 Efficiency Analysis

	4 Conclusion
	References

